[1]左立娜,袁和平,刘志娟,等.压裂裂缝地面微地震监测技术[J].油气井测试,2019,28(03):61-66.[doi:10.19680/j.cnki.1004-4388.2019.03.011]
 ZUO Lina,YUAN Heping,LIU Zhijuan,et al.Surface microseismic monitoring technology for fractured fractures[J].Well Testing,2019,28(03):61-66.[doi:10.19680/j.cnki.1004-4388.2019.03.011]
点击复制

压裂裂缝地面微地震监测技术()
分享到:

《油气井测试》[ISSN:1006-6977/CN:12-1485/TE]

卷:
28
期数:
2019年03期
页码:
61-66
栏目:
出版日期:
2019-06-25

文章信息/Info

Title:
Surface microseismic monitoring technology for fractured fractures
文章编号:
1004-4388(2019)03-0061-06
作者:
左立娜1袁和平1刘志娟2盛守东1才辉1王鹏3
.中国石油大庆油田有限责任公司第五采油厂  黑龙江大庆  163513
2.中国石油华北油田分公司第一采油厂  河北任丘  062552
3.中国石油集团渤海钻探工程有限公司油气井测试分公司  河北廊坊  065007
Author(s):
ZUO Lina1 YUAN Heping1LIU Zhijuan2 SHENG Shoudong1 CAI Hui1 WANG Peng3

1. NO.5 Oil Production Plant of Petrochina Daqing Oilfield Company, Daqing, Heilongjiang

163513, China
2. No. 1 Oil Production Plant of PetroChina North China Oil & Gas Company, Renqiu, Hebei 062552, China
3. Well Testing Company, CNPC Bohai Drilling Engineering Company Limited, Langfang, Hebei 065007, China

关键词:
压裂 裂缝 地面微地震监测 砂体发育 缝间干扰 方案设计
Keywords:

fracturing fracture surface microseismic monitoring sandbody development

fracture interference scheme design

分类号:
TE355
DOI:
10.19680/j.cnki.1004-4388.2019.03.011
文献标志码:
B
摘要:

为明确薄差油层压裂裂缝形态、走向,验证砂体发育特征,建立了注采井驱动关系,开展压裂裂缝地面

微地震监测。按要求埋置三分量检波器,在仪器放置点各连接一套监测仪器系统检测储层压裂过程中地层发生破裂形成的声波,以此确定裂缝方位、形态,判断平面及

纵向油层发育存在的差异。5口井压裂监测结果表明,砂体发育与裂缝波及体积呈正相关性,表外差层裂缝延伸能力差,波及孔隙体积与压裂液规模相当;表内薄差层

裂缝延伸能力强,波及孔隙体积大于压裂液体积。多层合段压裂时缝间干扰界限在15 m,隔层厚度小于界限时,裂缝延伸相互抑制,形态无法区分。裂缝形体及走向

与砂体非均质性关系明显,纵向上发育越好的层裂缝能量剖面越大,平面上发育越好的方向裂缝能量剖面延伸越明显。应用压裂裂缝地面微地震监测技术,有助于分析

裂缝形态、走向及砂体发育特征,有效指导压裂方案设计。

Abstract:

In order to clarify the shape and trend of fractured fractures in thin and

bad reservoirs and verify the development characteristics of sand bodies, the driving relationship of injectionproduction wells was established,

and surface microseismic monitoring of fractured fractures was carried out in this paper. In order to determine the orientation and shape of

fractures, and to judge the reservoir development difference between horizontal direction and vertical direction, the threecomponent geophone

was buried according to the requirementsand a set of monitoring instrument system was connected at each point of the instrument placement to

detect the acoustic wave caused by breakdown of formation during fracturing. The fracturing monitoring results of five wells show that the sand

body development was positively correlated with the volume affected by the fracture. The fracture extension ability of the outer bad layer was

poor, and the sweep pore volume was equal to the scale of fracturing fluid. However, the fracture extension ability of the inner thin and poor

layer was strong, and the sweep pore volume was larger than the fracturing fluid volume. When multiple layers were fractured together, the

interval interference limit was 15m, and when the thickness of the barrier was less than the limit, the fracture extension was mutually

restrained, and the shape cannot be distinguished. When the relationship between fracture shape, strike and heterogeneity of sand body was

obvious, the fracture energy profile of the layer with better vertical development was larger, and the fracture energy profile extended more

obviously in the direction with better horizontal development. The application of surface microseismic monitoring technology for fractured

fracture is helpful to analyze fracture morphology, strike and sand body development characteristics, thus effectively guiding the design of

fracturing scheme.

相似文献/References:

[1]高 超,艾 昆,高 辉,等. 基于施工压力曲线的综合滤失系数测试方法及压裂参数优化[J].油气井测试,2018,27(01):8.[doi:10.19680/j.cnki.1004-4388.2018.01.002]
 GAO Chao,AI Kun,GAO Hui,et al.Test method of total leak-off coefficient and optimization of fracturing parameters based on operation pressure curves[J].Well Testing,2018,27(03):8.[doi:10.19680/j.cnki.1004-4388.2018.01.002]
[2]刘豇瑜,杨向同,袁学芳,等.塔中志留系储层重复改造选井和产能预测方法[J].油气井测试,2018,27(01):55.[doi:10.19680/j.cnki.1004-4388.2018.01.009]
 LIU Jiangyu,YANG Xiangtong,YUAN Xuefang,et al.Method of restimulation candidate selection and productivity prediction for Silurian reservoirs in Tazhong area[J].Well Testing,2018,27(03):55.[doi:10.19680/j.cnki.1004-4388.2018.01.009]
[3]褚春波,郭 权,黄小云,等.有限元分析径向水力压裂裂缝扩展影响因素[J].油气井测试,2018,27(02):59.[doi:10.19680/j.cnki.1004-4388.2018.02.010]
 CHU Chunbo,GUO Quan,HUANG Xiaoyun,et al.Finiteelement analysis on influencing factors for propagation of fractures induced in radial jet hydraulic fracturing[J].Well Testing,2018,27(03):59.[doi:10.19680/j.cnki.1004-4388.2018.02.010]
[4]梁 斌,谭先红,焦松杰,等.东海低孔低渗气田气井压裂投产后“一点法”产能方程[J].油气井测试,2018,27(02):73.[doi:10.19680/j.cnki.1004-4388.2018.02.012]
 LIANG Bin,TAN Xianhong,JIAO Songjie,et al.“Singlepoint” productivity equation for fractured gas wells in lowporosity and lowpermeability reservoirs, East China Sea[J].Well Testing,2018,27(03):73.[doi:10.19680/j.cnki.1004-4388.2018.02.012]
[5]谢德湘,靳凯,易志东,等.考虑多效应作用的页岩气变流量压力数据分析方法[J].油气井测试,2018,27(03):14.[doi:10.19680/j.cnki.1044-4388.2018.03.003]
 XIE Dexiang,JIN Kai,YI Zhidong,et al.Pressure data analysis method for shale gas in production with variable rate with consideration of multieffect[J].Well Testing,2018,27(03):14.[doi:10.19680/j.cnki.1044-4388.2018.03.003]
[6]韦海涛.FulconFrac全裂缝导流压裂新技术[J].油气井测试,2018,27(04):42.[doi:10.19680/j.cnki.1004-4388.2018.04.007]
 [J].Well Testing,2018,27(03):42.[doi:10.19680/j.cnki.1004-4388.2018.04.007]
[7]张兴华,周新宇,杨子,等.APR测试工艺在压裂测试井中的技术创新[J].油气井测试,2018,27(05):13.[doi:10.19680/j.cnki.1004-4388.2018.05.003]
 ZHANG Xinghua,ZHOU Xinyu,YANG Zi,et al.Technical innovation of APR testing technology in fracturing test wells [J].Well Testing,2018,27(03):13.[doi:10.19680/j.cnki.1004-4388.2018.05.003]
[8]王伟佳.页岩气井无限级固井滑套压裂技术 [J].油气井测试,2018,27(05):37.[doi:10.19680/j.cnki.1004-4388.2018.05.007]
 WANG Weijia.Infinitestage cementing sleeve fracturing technology for shale gas wells[J].Well Testing,2018,27(03):37.[doi:10.19680/j.cnki.1004-4388.2018.05.007]
[9]胡忠太.利用高扩张滑套开关工具关闭投球压裂滑套[J].油气井测试,2018,27(06):68.[doi:10.19680/j.cnki.1004-4388.2018.06.012]
 [J].Well Testing,2018,27(03):68.[doi:10.19680/j.cnki.1004-4388.2018.06.012]
[10]张毅,李景卫,杨小涛,等.新型可降解压裂封隔器胶筒[J].油气井测试,2019,28(02):51.[doi:10.19680/j.cnki.1004-4388.2019.02.009]
 ZHANG Yi,LI Jingwei,YANG Xiaotao,et al.New degradable fracturing packer rubber[J].Well Testing,2019,28(03):51.[doi:10.19680/j.cnki.1004-4388.2019.02.009]

备注/Memo

备注/Memo:

2018-08-25 收稿,2019-03-08 修回,2019-03-28 接受,2019-06-20 网络版发表
左立娜,女,1980年出生,高级工程师,2004年毕业于大庆石油学院石油工程专业,现从

事采油工艺研究工作。电话:0459-4597577,18045906387;Email:zlina@petrochina.com.cn。通信地址:黑龙江省大庆市红岗区杏南中心村杏南东街10-6号,邮政

编码:163513。

更新日期/Last Update: 2019-07-03