[1]高 超,艾 昆,高 辉,等. 基于施工压力曲线的综合滤失系数测试方法及压裂参数优化[J].油气井测试,2018,27(01):8-13.[doi:10.19680/j.cnki.1004-4388.2018.01.002]
 GAO Chao,AI Kun,GAO Hui,et al.Test method of total leak-off coefficient and optimization of fracturing parameters based on operation pressure curves[J].Well Testing,2018,27(01):8-13.[doi:10.19680/j.cnki.1004-4388.2018.01.002]
点击复制

 基于施工压力曲线的综合滤失系数测试方法及压裂参数优化()
分享到:

《油气井测试》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2018年01期
页码:
8-13
栏目:
出版日期:
2018-02-25

文章信息/Info

Title:

Test method of total leak-off coefficient and optimization of fracturing parameters based on operation pressure curves

文章编号:
1004-4388(2018)01-0008-06
作者:
 高 超1艾 昆12 高 辉1段隆臣1
 1. 中国地质大学(武汉)工程学院 湖北武汉 430074
2. 中国石化华北石油工程有限公司井下分公司 河南郑州 450042
Author(s):
 

GAO Chao1 AI Kun12 GAO Hui1 DUAN Longchen1

 

1. School of Engineering, China University of Geosciences, Wuhan, Hubei 430074, China

2. Downhole Branch Company, Sinopec Huabei Petroleum Engineering Co., Ltd., Zhengzhou, Henan 450042, China

关键词:
 压裂压裂液施工压力曲线PKN模型反演综合滤失系数压裂设计方法大牛地气田
Keywords:
 

fracture fracturing fluid operational pressure curve PKN model inversion total leak-off coefficient unified fracture design (UFD) method Daniudi gas field

分类号:
TE357
DOI:
10.19680/j.cnki.1004-4388.2018.01.002
文献标志码:
A
摘要:
 在水力压裂施工中,压裂液的滤失性质直接影响压裂液的工作效率,从而影响形成的水力裂缝几何尺寸和导流能力,故准确地测试施工过程中压裂液滤失情况对评价改造效果很重要。以大牛地某气井压裂为例,在二维裂缝扩展模型(PKN)下,利用该模型的净压力公式建立施工压力计算模型,计算施工过程中的施工压力曲线,最后通过计算的施工压力曲线与实际施工压力曲线反演获取压裂液综合滤失系数。研究结果表明,该井施工中压裂液综合滤失系数为0.1 mm/min 0.5,利用该反演结果,采用统一压裂设计(UFD)方法优化主要的压裂施工参数,优化后,前置液量为490 m 3,施工排量为9 m 3/min。该方法反演效果较好,利用该方法可为判断压裂施工效果和优化施工参数提供一定依据。
Abstract:
 

In hydraulic fracturing construction, the filter loss property of fracturing fluid directly affects the working efficiency of fracturing fluid, and thus affects the geometrical size and conductivity of forming hydraulic fracture, and therefore, it is very important to evaluate the effect of reformation by accurately testing the fluid filtration in the construction process. With a gas well in Daniudi gas field as an example, the operational pressure model was built on the basis of 2D fracture propagation model (e.g. PKN) to determine the operational pressure curves. Then, the calculated operational pressure curves were inverted with the actual operational pressure curves to obtain the total leak-off coefficient of fracturing fluids. The results show that the total leak-off coefficient of fracturing fluids in the well is 0.1 mm/min0.5. Based on the inversion results, the unified fracture design (UFD) technique was used to optimize key fracturing parameters. As a result, the volume of prepad fluid was 490 m3, and the flow rate was 9 m3/min. Accordingly, the leak-off coefficient of fracturing fluids is successfully obtained through inversion of operational pressure curves, thus providing reliable references to determine performances of fracturing operations.

相似文献/References:

[1]曹银萍,黄宇曦,于凯强,等. 基于ANSYS Workbench完井管柱流固耦合振动固有频率分析[J].油气井测试,2018,27(01):1.[doi:10.19680/j.cnki.1004-4388.2018.01.001]
 CAO Yinping,HUANG Yuxi,YU Kaiqiang,et al. Natural frequency analysis for fluidsolid coupling vibration of completion string based on ANSYS workbench[J].Well Testing,2018,27(01):1.[doi:10.19680/j.cnki.1004-4388.2018.01.001]
[2]刘豇瑜,杨向同,袁学芳,等.塔中志留系储层重复改造选井和产能预测方法[J].油气井测试,2018,27(01):55.[doi:10.19680/j.cnki.1004-4388.2018.01.009]
 LIU Jiangyu,YANG Xiangtong,YUAN Xuefang,et al.Method of restimulation candidate selection and productivity prediction for Silurian reservoirs in Tazhong area[J].Well Testing,2018,27(01):55.[doi:10.19680/j.cnki.1004-4388.2018.01.009]
[3]周小林,高志华,张 冲.龙凤山气田大通径免钻桥塞分段压裂先导试验[J].油气井测试,2018,27(01):62.[doi:10.19680/j.cnki.1004-4388.2018.01.010]
 ZHOU Xiaolin,GAO Zhihua,ZHANG Chong. Pilot tests of staged fracturing involving largediameter drillfree bridge plugs in the Longfengshan gas field[J].Well Testing,2018,27(01):62.[doi:10.19680/j.cnki.1004-4388.2018.01.010]
[4]魏 聪,陈宝新,刘 敏,等. 基于反褶积技术的S气井不稳定试井解释[J].油气井测试,2018,27(01):73.[doi:10.19680/j.cnki.1004-4388.2018.01.012]
 WEI Cong,CHEN Baoxin,LIU Min,et al. Interpretation of pressure transient well testing data of S gas well based on deconvolution technique[J].Well Testing,2018,27(01):73.[doi:10.19680/j.cnki.1004-4388.2018.01.012]
[5]张中宝.塔河油田深抽杆式泵一体化管柱工艺[J].油气井测试,2018,27(02):27.[doi:10.19680/j.cnki.1004-4388.2018.02.005]
 ZHANG Zhongbao.Deep integrated rod pumping string applied in Tahe Oilfield[J].Well Testing,2018,27(01):27.[doi:10.19680/j.cnki.1004-4388.2018.02.005]
[6]李军贤.地层出砂井测试工艺优化[J].油气井测试,2018,27(02):47.[doi:10.19680/j.cnki.1004-4388.2018.02.008]
 LI Junxian.Optimization of testing techniques for wells with formation sand production[J].Well Testing,2018,27(01):47.[doi:10.19680/j.cnki.1004-4388.2018.02.008]
[7]田向东,康 露,杨 志,等.海上油气井快速诱喷测试技术[J].油气井测试,2018,27(02):41.[doi:10.19680/j.cnki.1004-4388.2018.02.007]
 TIAN Xiangdong,KANG Lu,YANG Zhi,et al.Fast testing of induced flows in offshore oil/gas wells[J].Well Testing,2018,27(01):41.[doi:10.19680/j.cnki.1004-4388.2018.02.007]
[8]张 毅,于丽敏,任勇强,等.一种新型可降解压裂封隔器坐封球[J].油气井测试,2018,27(02):53.[doi:10.19680/j.cnki.1004-4388.2018.02.009]
 ZHANG Yi,YU Limin,REN Yongqiang,et al.A new type of degradable setting ball for fracturing packers[J].Well Testing,2018,27(01):53.[doi:10.19680/j.cnki.1004-4388.2018.02.009]
[9]庞伟.酸性气藏深井产能试井方法[J].油气井测试,2018,27(02):67.[doi:10.19680/j.cnki.1004-4388.2018.02.011]
 PANG Wei.Deliverability test method for deep sour gas wells[J].Well Testing,2018,27(01):67.[doi:10.19680/j.cnki.1004-4388.2018.02.011]
[10]孟宪伟,刘洪杰,王佩文,等. 基于卷积和矩阵变流量压降试井解释新方法[J].油气井测试,2018,27(03):1.[doi:10.19680/j.cnki.1004-4388.2018.03.001]
 MENG Xianwei,LIU Hongjie,WANG Peiwen,et al. A new interpretation technique based on convolution and matrix for variablerate falloff test[J].Well Testing,2018,27(01):1.[doi:10.19680/j.cnki.1004-4388.2018.03.001]
[11]褚春波,郭 权,黄小云,等.有限元分析径向水力压裂裂缝扩展影响因素[J].油气井测试,2018,27(02):59.[doi:10.19680/j.cnki.1004-4388.2018.02.010]
 CHU Chunbo,GUO Quan,HUANG Xiaoyun,et al.Finiteelement analysis on influencing factors for propagation of fractures induced in radial jet hydraulic fracturing[J].Well Testing,2018,27(01):59.[doi:10.19680/j.cnki.1004-4388.2018.02.010]
[12]梁 斌,谭先红,焦松杰,等.东海低孔低渗气田气井压裂投产后“一点法”产能方程[J].油气井测试,2018,27(02):73.[doi:10.19680/j.cnki.1004-4388.2018.02.012]
 LIANG Bin,TAN Xianhong,JIAO Songjie,et al.“Singlepoint” productivity equation for fractured gas wells in lowporosity and lowpermeability reservoirs, East China Sea[J].Well Testing,2018,27(01):73.[doi:10.19680/j.cnki.1004-4388.2018.02.012]
[13]王绪性,冯青,李湾湾,等.海上中低渗储层水力喷射压裂技术[J].油气井测试,2021,30(01):46.[doi:10.19680/j.cnki.1004-4388.2021.01.009]
 WANG Xuxing,FENG Qing,LI Wanwan,et al. Hydraulic jet fracturing technology for offshore medium and low permeability reservoirs[J].Well Testing,2021,30(01):46.[doi:10.19680/j.cnki.1004-4388.2021.01.009]
[14]吴晓光,袁莉,李萌,等. 川西坳陷洛带气田致密砂岩气藏压力恢复试井特征分析[J].油气井测试,2021,30(01):59.[doi:10.19680/j.cnki.1004-4388.2021.01.011]
 WU Xiaoguang,YUAN Li,LI Meng,et al.Pressure buildup test characteristics of tight sandstone gas reservoir in Luodai gas field, Western Sichuan depression[J].Well Testing,2021,30(01):59.[doi:10.19680/j.cnki.1004-4388.2021.01.011]
[15]林应之,林启才,邓世杨,等. 深层砂岩裂缝性气藏缝网压裂裂缝导流能力分析[J].油气井测试,2021,30(05):9.[doi:10.19680/j.cnki.1004-4388.2021.05.002]
 LIN Yingzhi,LIN Qicai,DENG Shiyang,et al. Analysis on fracture conductivity of fracture network fracturing in deep sandstone fractured gas reservoir[J].Well Testing,2021,30(01):9.[doi:10.19680/j.cnki.1004-4388.2021.05.002]
[16]郭权. 大庆油田扶杨油层压后水性识别新方法[J].油气井测试,2021,30(05):55.[doi:10.19680/j.cnki.1004-4388.2021.05.010]
 GUO Quan. A new method for water identification of Fuyang oil reservoir after formation in Daqing Oilfield[J].Well Testing,2021,30(01):55.[doi:10.19680/j.cnki.1004-4388.2021.05.010]
[17]方正,丁群,李静宇,等. 基于深度置信网络模型的页岩油产量预测方法[J].油气井测试,2022,31(03):61.[doi:10.19680/j.cnki.1004-4388.2022.03.011]
 [J].Well Testing,2022,31(01):61.[doi:10.19680/j.cnki.1004-4388.2022.03.011]
[18]王学正,冯强,秦诗涛,等. HPR 高温高压压裂封隔器的研制与应用[J].油气井测试,2023,32(01):45.[doi:10. 19680/ j. cnki. 1004-4388. 2023. 01. 008]
 [J].Well Testing,2023,32(01):45.[doi:10. 19680/ j. cnki. 1004-4388. 2023. 01. 008]
[19]王海兵,陶静,彭丽. 压裂后不稳定试井早期恢复压力拟合重建方法[J].油气井测试,2023,32(04):68.[doi:10.19680/j.cnki.1004-4388.2023.04.012]
 [J].Well Testing,2023,32(01):68.[doi:10.19680/j.cnki.1004-4388.2023.04.012]
[20]吴刚,刘其伦,钟小军,等. 束鹿页岩油密切割压裂技术——以SY302X井为例[J].油气井测试,2023,32(05):36.[doi:10.19680/j.cnki.1004-4388.2023.05.007]
 [J].Well Testing,2023,32(01):36.[doi:10.19680/j.cnki.1004-4388.2023.05.007]

备注/Memo

备注/Memo:
 收稿日期 2017-07-21收稿,2018-01-06修回,2018-01-15接受,2018-03-30网络发表
高超,男,1992年出生,中国地质大学(武汉)工程学院地质工程专业硕士学位在读,主要从事油气增产措施方面的研究工作。电话:027-67883507,15002764927;Email:405607947@qq.com。地址:湖北省武汉市洪山区鲁磨路388号,邮政编码:430074。
更新日期/Last Update: 2018-04-26