[1]张毅,李景卫,杨小涛,等.新型可降解压裂封隔器胶筒[J].油气井测试,2019,28(02):51-55.[doi:10.19680/j.cnki.1004-4388.2019.02.009]
 ZHANG Yi,LI Jingwei,YANG Xiaotao,et al.New degradable fracturing packer rubber[J].Well Testing,2019,28(02):51-55.[doi:10.19680/j.cnki.1004-4388.2019.02.009]
点击复制

新型可降解压裂封隔器胶筒()
分享到:

《油气井测试》[ISSN:1006-6977/CN:12-1485/TE]

卷:
28
期数:
2019年02期
页码:
51-55
栏目:
出版日期:
2019-04-25

文章信息/Info

Title:
New degradable fracturing packer rubber
文章编号:
1004-4388(2019)02-0051-05
作者:
张毅12李景卫2杨小涛2张伟2刘晓林2王荫刚2
1.西安石油大学石油工程学院 陕西西安 710065
2.中国石油集团渤海钻探工程有限公司井下作业分公司 河北任丘 062552
Author(s):
ZHANG Yi 1、2LI Jingwei 2YANG Xiaotao 2ZHANG Wei 2LIU Xiaolin 2WANG Yingang 2
1. College of Petroleum Engineering,Xian Shiyou University,Xian,Shaanxi 710065,China
2. Downhole Operation Company of CNPC Bohai Drilling Engineering Company,Renqiu,Hebei 062552,China
关键词:
压裂 可降解橡胶 封隔器 胶筒 聚氨酯橡胶 溶解时间
Keywords:

fracturing degradable rubber packer rubber cylinder polyurethane rubber dissolution

time

分类号:
TE357
DOI:
10.19680/j.cnki.1004-4388.2019.02.009
文献标志码:
B
摘要:

普通橡胶制作的封隔器胶筒压裂施工结束后,易造成解封困难。从常用的各类基底胶料中优选出遇水可自行降解

的橡胶材料,其组成为:聚氨酯橡胶、第一吸水材料、第二吸水材料、镁合金材料、降解剂、有机包裹材料。室内降解性能和承压性能实验表明,可降解橡胶材料制作

的样件在氯根为19503 mg/L的地层水溶液中,温度90 ℃保温72 h后降解为粉末;可降解封隔器胶筒在3%KCl滑溜水中浸泡12 h后加压至70 MPa,保压4 h压力不降。

在留10792X井压裂施工中,将可降解封隔器胶筒安装在Y441封隔器上,承压45 MPa,放喷10 d后封隔器解封顺利,压裂管柱起出后发现胶筒已完全溶解,表明可降解

封隔器胶筒可以满足井温120℃以下的压裂施工要求。

Abstract:

After fracturing of packer rubber cylinder made of ordinary rubber, it is easy to

cause difficulty in unloading. The selfdegradable rubber materials were selected from the commonly used base rubber materials. The compositions

were polyurethane rubber, first waterabsorbing material, second waterabsorbing material, magnesium alloy material, degradant and organic

wrapping material. The indoor degradability and compressive performance experiments show that the samples made of degradable rubber material

degrade into powder after 72 hours′ holding at 90 ℃ in the stratum water solution with 19503 mg/L chloride, and the pressure of the degradable

packer rubber tube is 70 MPa after 12 hours′ soaking in 3% KCl sliding water, and the pressure of the packer rubber tube remains constant for 4

hours. During the fracturing operation of well Liu10792X, the degradable packer rubber tube was installed on the Y441 packer. The pressure was

45 MPa. The packer was released smoothly after 10 days. After the fracturing string was released, it was found that the rubber tube of the

degradable packer had completely dissolved, which indicated that the rubber tube of the degradable packer could meet the fracturing operation

requirement of well temperature below 120 ℃.

相似文献/References:

[1]高 超,艾 昆,高 辉,等. 基于施工压力曲线的综合滤失系数测试方法及压裂参数优化[J].油气井测试,2018,27(01):8.[doi:10.19680/j.cnki.1004-4388.2018.01.002]
 GAO Chao,AI Kun,GAO Hui,et al.Test method of total leak-off coefficient and optimization of fracturing parameters based on operation pressure curves[J].Well Testing,2018,27(02):8.[doi:10.19680/j.cnki.1004-4388.2018.01.002]
[2]刘豇瑜,杨向同,袁学芳,等.塔中志留系储层重复改造选井和产能预测方法[J].油气井测试,2018,27(01):55.[doi:10.19680/j.cnki.1004-4388.2018.01.009]
 LIU Jiangyu,YANG Xiangtong,YUAN Xuefang,et al.Method of restimulation candidate selection and productivity prediction for Silurian reservoirs in Tazhong area[J].Well Testing,2018,27(02):55.[doi:10.19680/j.cnki.1004-4388.2018.01.009]
[3]褚春波,郭 权,黄小云,等.有限元分析径向水力压裂裂缝扩展影响因素[J].油气井测试,2018,27(02):59.[doi:10.19680/j.cnki.1004-4388.2018.02.010]
 CHU Chunbo,GUO Quan,HUANG Xiaoyun,et al.Finiteelement analysis on influencing factors for propagation of fractures induced in radial jet hydraulic fracturing[J].Well Testing,2018,27(02):59.[doi:10.19680/j.cnki.1004-4388.2018.02.010]
[4]梁 斌,谭先红,焦松杰,等.东海低孔低渗气田气井压裂投产后“一点法”产能方程[J].油气井测试,2018,27(02):73.[doi:10.19680/j.cnki.1004-4388.2018.02.012]
 LIANG Bin,TAN Xianhong,JIAO Songjie,et al.“Singlepoint” productivity equation for fractured gas wells in lowporosity and lowpermeability reservoirs, East China Sea[J].Well Testing,2018,27(02):73.[doi:10.19680/j.cnki.1004-4388.2018.02.012]
[5]谢德湘,靳凯,易志东,等.考虑多效应作用的页岩气变流量压力数据分析方法[J].油气井测试,2018,27(03):14.[doi:10.19680/j.cnki.1044-4388.2018.03.003]
 XIE Dexiang,JIN Kai,YI Zhidong,et al.Pressure data analysis method for shale gas in production with variable rate with consideration of multieffect[J].Well Testing,2018,27(02):14.[doi:10.19680/j.cnki.1044-4388.2018.03.003]
[6]韦海涛.FulconFrac全裂缝导流压裂新技术[J].油气井测试,2018,27(04):42.[doi:10.19680/j.cnki.1004-4388.2018.04.007]
 [J].Well Testing,2018,27(02):42.[doi:10.19680/j.cnki.1004-4388.2018.04.007]
[7]张兴华,周新宇,杨子,等.APR测试工艺在压裂测试井中的技术创新[J].油气井测试,2018,27(05):13.[doi:10.19680/j.cnki.1004-4388.2018.05.003]
 ZHANG Xinghua,ZHOU Xinyu,YANG Zi,et al.Technical innovation of APR testing technology in fracturing test wells [J].Well Testing,2018,27(02):13.[doi:10.19680/j.cnki.1004-4388.2018.05.003]
[8]王伟佳.页岩气井无限级固井滑套压裂技术 [J].油气井测试,2018,27(05):37.[doi:10.19680/j.cnki.1004-4388.2018.05.007]
 WANG Weijia.Infinitestage cementing sleeve fracturing technology for shale gas wells[J].Well Testing,2018,27(02):37.[doi:10.19680/j.cnki.1004-4388.2018.05.007]
[9]胡忠太.利用高扩张滑套开关工具关闭投球压裂滑套[J].油气井测试,2018,27(06):68.[doi:10.19680/j.cnki.1004-4388.2018.06.012]
 [J].Well Testing,2018,27(02):68.[doi:10.19680/j.cnki.1004-4388.2018.06.012]
[10]左立娜,袁和平,刘志娟,等.压裂裂缝地面微地震监测技术[J].油气井测试,2019,28(03):61.[doi:10.19680/j.cnki.1004-4388.2019.03.011]
 ZUO Lina,YUAN Heping,LIU Zhijuan,et al.Surface microseismic monitoring technology for fractured fractures[J].Well Testing,2019,28(02):61.[doi:10.19680/j.cnki.1004-4388.2019.03.011]

更新日期/Last Update: 2019-04-30