[1]刘玲莉,彭贤强,陈洪地,等.气井针型节流阀失效因素模拟分析[J].油气井测试,2020,29(02):7-12.[doi:10.19680/j.cnki.1004-4388.2020.02.002]
 LIU Lingli,PENG Xianqiang,CHEN Hongdi,et al.Simulation analysis of failure factors for needle throttle valve in gas well[J].Well Testing,2020,29(02):7-12.[doi:10.19680/j.cnki.1004-4388.2020.02.002]
点击复制

气井针型节流阀失效因素模拟分析()
分享到:

《油气井测试》[ISSN:1006-6977/CN:61-1281/TN]

卷:
29卷
期数:
2020年02期
页码:
7-12
栏目:
出版日期:
2020-04-25

文章信息/Info

Title:
Simulation analysis of failure factors for needle throttle valve in gas well
文章编号:
1004-4388(2020)02-0007-06
作者:
 刘玲莉1彭贤强2陈洪地2程欣2缪凯2
1.中国石油勘探开发研究院亚太研究所 北京 100083
2.中国石油集团长城钻探工程有限公司测试公司 北京 100101
Author(s):
LIU Lingli1 PENG Xianqiang2 CHEN Hongdi2 CHENG Xin2 MIAO Kai2
 1.Asia Pacific Research Institute of China Petroleum Exploration and Development Research Institute, Beijing 100083, China
2.Test Company of CNPC Great Wall Drilling Engineering Co., Ltd., Beijing 100101, China
关键词:
试油 针型节流阀 冲蚀 水合物 冰堵 阀杆 静载荷 振动载荷 数值模拟
Keywords:
oil production test needle throttle valve erosion hydrate ice plug stem static load vibration load numerical simulation
分类号:
TE353
DOI:
10.19680/j.cnki.1004-4388.2020.02.002
文献标志码:
A
摘要:
在气井中可调针型阀节流时常因高压高速及含砂出现阀杆脱落断裂、针阀冲蚀、水合物冰堵等失效现象,影响测试和生产地面流程安全。利用Fluent数值模拟,建立针型节流阀数值模型,通过模拟计算,得到节流前后速度、压力、温度流场,认识针型节流阀节流规律;分析水合物冰堵潜在成因,认为温度最低部位在锥形油嘴芯后半部分;分析阀杆受力情况,得到阀杆脱落原因主要在于对阀杆及阀芯的直接冲击、进入节流段前绕流引起的横向振动、进入节流段后锥面上漩涡脱落引起的横向和纵向振动;结合冲蚀离散模型计算,得到针阀冲蚀速率分布规律,冲蚀部位主要为针形阀芯中部及阀座突缩处。模拟计算得到的冲蚀损伤部位与实际损伤部位较符合。该分析适用于类似流场和冲蚀速率分布规律研究。
Abstract:
In a gas well, the adjustable needle valve often becomes invalid due to high pressure and high speed and sand containing, with valve stems falling off and cracking, needle valve erosion, hydrate ice blocking and other failure phenomena. These problems affect the safety of testing and production surface processes. This paper established a numerical model of needle throttle using Fluent numerical simulation. Through simulation calculation, the velocity, pressure, and temperature flow fields before and after throttling are obtained, and the throttling rule of needle throttle is recognized. The potential cause of hydrate ice blocking is analyzed. It is considered that the lowest temperature is in the second half of the conical nozzle core. After the force of the valve stem is analyzed, the main reasons for the valve stem falling are the direct impact on the valve stem and the valve core, the lateral vibration caused by the flow before entering the throttle section, and lateral and longitudinal vibration caused by vortex shedding on the rear cone surface of the segment. The distribution pattern of the erosion rate of the needle valve is obtained with the calculation of the erosion discrete model. The erosion part is mainly in the middle of the needle valve core and at the seat of the valve seat. The erosion damage area calculated by simulation is in good agreement with the actual damage area. The analysis is applicable to the study of similar flow field and erosion rate distribution.

相似文献/References:

[1]曹银萍,黄宇曦,于凯强,等. 基于ANSYS Workbench完井管柱流固耦合振动固有频率分析[J].油气井测试,2018,27(01):1.[doi:10.19680/j.cnki.1004-4388.2018.01.001]
 CAO Yinping,HUANG Yuxi,YU Kaiqiang,et al. Natural frequency analysis for fluidsolid coupling vibration of completion string based on ANSYS workbench[J].Well Testing,2018,27(02):1.[doi:10.19680/j.cnki.1004-4388.2018.01.001]
[2]马金良,刘泽宇,李春宁,等.一趟管柱分层射孔与水力泵排液联作技术[J].油气井测试,2018,27(02):23.[doi:10.19680/j.cnki.1004-4388.2018.02.004]
 MA Jinliang,LIU Zeyu,LI Chunning,et al.Integration of layered perforation and flowback by hydraulic pump in one trip[J].Well Testing,2018,27(02):23.[doi:10.19680/j.cnki.1004-4388.2018.02.004]
[3]高辉.螺杆泵与水力泵在水平井排液求产中的适应性分析[J].油气井测试,2018,27(03):22.[doi:10.19680/j.cnki.1004-4388.2018.03.004]
 GAO Hui.Adaptability analysis of screw pump and hydraulic pump during the production of horizontal wells[J].Well Testing,2018,27(02):22.[doi:10.19680/j.cnki.1004-4388.2018.03.004]
[4]贾振甲,孙 达,李方宇,等.致密油储层试油分布式光纤传感监测技术[J].油气井测试,2018,27(03):58.[doi:10.19680/j.cnki.1004-4388.2018.03.010]
 JIA Zhenjia,SUN Da,LI Fangyu,et al.Monitoring technique involving distributed optical fiber sensor for well testingin tight oil reservoirs[J].Well Testing,2018,27(02):58.[doi:10.19680/j.cnki.1004-4388.2018.03.010]
[5]文宏武,王靖淇,刘萍,等.双空心抽油杆螺杆泵热采试油技术 [J].油气井测试,2018,27(05):24.[doi:10.19680/j.cnki.1004-4388.2018.05.005]
 WEN Hongwu,WANG Jingqi,LIU Ping,et al.Screw pump thermal recovery test technology driven by double hollow sucker rod[J].Well Testing,2018,27(02):24.[doi:10.19680/j.cnki.1004-4388.2018.05.005]
[6]吴志均,段德祥,王文广,等.明格布拉克构造“五高”深井试油测试技术[J].油气井测试,2020,29(02):13.[doi:10.19680/j.cnki.1004-4388.2020.02.003]
 WU Zhijun,DUAN Dexiang,WANG Wenguang,et al.The oil test technology for “five high” deep well in Mingbulak structure[J].Well Testing,2020,29(02):13.[doi:10.19680/j.cnki.1004-4388.2020.02.003]
[7]焦金龙,卢金柱,周海洋.双级密封抽汲防喷盒[J].油气井测试,2020,29(03):27.[doi:10.19680/j.cnki.1004-4388.2020.03.005]
 JIAO Jinlong,LU Jinzhu,ZHOU Haiyang.Doublestage sealed pumping blowout preventing box[J].Well Testing,2020,29(02):27.[doi:10.19680/j.cnki.1004-4388.2020.03.005]
[8]马金良,王方祥,王颖,等.油管防溢通井规的研制[J].油气井测试,2020,29(06):27.[doi:10.19680/j.cnki.1004-4388.2020.06.005]
 MA Jinliang,WANG Fangxiang,WANG Ying,et al.Development of an overflowproof drift size gauge tool[J].Well Testing,2020,29(02):27.[doi:10.19680/j.cnki.1004-4388.2020.06.005]
[9]肖志永. 开式抽汲排液中P-T封隔器失封原因分析[J].油气井测试,2021,30(05):18.[doi:10.19680/j.cnki.1004-4388.2021.05.003]
 XIAO Zhiyong. Analysis of failure causes of PT packer in open swabbing and drainage[J].Well Testing,2021,30(02):18.[doi:10.19680/j.cnki.1004-4388.2021.05.003]
[10]郭权. 大庆油田扶杨油层压后水性识别新方法[J].油气井测试,2021,30(05):55.[doi:10.19680/j.cnki.1004-4388.2021.05.010]
 GUO Quan. A new method for water identification of Fuyang oil reservoir after formation in Daqing Oilfield[J].Well Testing,2021,30(02):55.[doi:10.19680/j.cnki.1004-4388.2021.05.010]

备注/Memo

备注/Memo:
收稿日期 2019-05-12收稿,2020-02-20修回,2020-03-10接受,2020-04-20
刘玲莉,女,1980年出生,高级工程师,2006年毕业于中国石油勘探开发研究院油气田开发专业,长期从事油气田开发和试井技术工作。电话:01059286016,13683514940;Email:liulingli@cnpcint.com。通信地址:北京市海淀区学院路20号石油大院,邮政编码:100083。
更新日期/Last Update: 2020-05-15