[1]曹银萍,黄宇曦,于凯强,等. 基于ANSYS Workbench完井管柱流固耦合振动固有频率分析[J].油气井测试,2018,27(01):1-7.[doi:10.19680/j.cnki.1004-4388.2018.01.001]
 CAO Yinping,HUANG Yuxi,YU Kaiqiang,et al. Natural frequency analysis for fluidsolid coupling vibration of completion string based on ANSYS workbench[J].Well Testing,2018,27(01):1-7.[doi:10.19680/j.cnki.1004-4388.2018.01.001]
点击复制

 基于ANSYS Workbench完井管柱流固耦合振动固有频率分析()
分享到:

《油气井测试》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2018年01期
页码:
1-7
栏目:
出版日期:
2018-02-25

文章信息/Info

Title:
 Natural frequency analysis for fluidsolid coupling vibration of completion string based on ANSYS workbench
文章编号:
1004-4388(2018)01-0001-07
作者:
曹银萍1 黄宇曦1 于凯强2 窦益华1
1. 西安石油大学机械工程学院  陕西西安  710065
2. 中航富士达科技股份有限公司  陕西西安  710000
Author(s):
 CAO Yinping1 HUANG Yuxi1 YU Kaiqiang2 DOU Yihua1
1. College of Mechanical Engineering, Xi’an Shiyou University, Xi’an, Shaanxi 710065, China
2. Avic Forstar Company, Xi’an, Shaanxi 710000, China
关键词:
 试油完井管柱固有频率流固耦合模态分析ANSYS Workbench有限元分析
Keywords:
 well testing completion string natural frequency fluidsolid coupling effect modal analysis ANSYS Workbench finite element analysis
分类号:
TE925
DOI:
10.19680/j.cnki.1004-4388.2018.01.001
文献标志码:
A
摘要:
试油完井工况下,处于高温高压环境中的管柱易受到压力、轴向力、温度以及流固耦合作用的影响而引发振动。以完井管柱为研究对象,在ANSYS Workbench中建立完井管柱的有限元模型,用六面体八节点单元进行了网格划分,并对流体和固体设置流固耦合交界面,分析了内压、轴向力以及流固耦合作用对完井管柱固有频率的影响。研究结果表明,完井管柱的固有频率随着管柱内压的增加而减小;完井管柱固有频率随着轴向力的增加而增加;流固耦合作用会降低管柱的固有频率。当管柱内流体为天然气时,管柱的固有频率减小14%;当管柱内流体为水时,管柱的固有频率减少18%,液体与管柱流固耦合作用对管柱固有频率的影响大于气体。该分析为试油完井管柱安全性评估和结构优化提供了理论支持。
Abstract:
Under the high temperature and highpressure conditions, the production test and completion string may vibrate due to pressure, axial force, temperature and fluidsolid coupling effect. In this paper, a finite element model of the completion string has been established in ANSYS Workbench and meshed with the hexahedron eightnode element. Meanwhile, the fluidsolid coupling interface is set up in order to analyze the influence of internal pressure, axial force and fluidsolid coupling effect on natural frequency of the completion string. The results show that the natural frequency of the completion string decreases with the increase of the internal pressure, increases with the increase of axial force, and reduces due to the fluidsolid coupling effect. When the fluid in the string is natural gas, the natural frequency can decrease by 14%. When the fluid in the string is water, the natural frequency can decrease by 18%. The fluidsolid coupling effect between liquid and string has a greater effect on the natural frequency than the gas. This study provides theoretical basis for safety evaluation and structure optimization of well testing string.

相似文献/References:

[1]高 超,艾 昆,高 辉,等. 基于施工压力曲线的综合滤失系数测试方法及压裂参数优化[J].油气井测试,2018,27(01):8.[doi:10.19680/j.cnki.1004-4388.2018.01.002]
 GAO Chao,AI Kun,GAO Hui,et al.Test method of total leak-off coefficient and optimization of fracturing parameters based on operation pressure curves[J].Well Testing,2018,27(01):8.[doi:10.19680/j.cnki.1004-4388.2018.01.002]
[2]周小林,高志华,张 冲.龙凤山气田大通径免钻桥塞分段压裂先导试验[J].油气井测试,2018,27(01):62.[doi:10.19680/j.cnki.1004-4388.2018.01.010]
 ZHOU Xiaolin,GAO Zhihua,ZHANG Chong. Pilot tests of staged fracturing involving largediameter drillfree bridge plugs in the Longfengshan gas field[J].Well Testing,2018,27(01):62.[doi:10.19680/j.cnki.1004-4388.2018.01.010]
[3]魏 聪,陈宝新,刘 敏,等. 基于反褶积技术的S气井不稳定试井解释[J].油气井测试,2018,27(01):73.[doi:10.19680/j.cnki.1004-4388.2018.01.012]
 WEI Cong,CHEN Baoxin,LIU Min,et al. Interpretation of pressure transient well testing data of S gas well based on deconvolution technique[J].Well Testing,2018,27(01):73.[doi:10.19680/j.cnki.1004-4388.2018.01.012]
[4]马金良,刘泽宇,李春宁,等.一趟管柱分层射孔与水力泵排液联作技术[J].油气井测试,2018,27(02):23.[doi:10.19680/j.cnki.1004-4388.2018.02.004]
 MA Jinliang,LIU Zeyu,LI Chunning,et al.Integration of layered perforation and flowback by hydraulic pump in one trip[J].Well Testing,2018,27(01):23.[doi:10.19680/j.cnki.1004-4388.2018.02.004]
[5]张中宝.塔河油田深抽杆式泵一体化管柱工艺[J].油气井测试,2018,27(02):27.[doi:10.19680/j.cnki.1004-4388.2018.02.005]
 ZHANG Zhongbao.Deep integrated rod pumping string applied in Tahe Oilfield[J].Well Testing,2018,27(01):27.[doi:10.19680/j.cnki.1004-4388.2018.02.005]
[6]李军贤.地层出砂井测试工艺优化[J].油气井测试,2018,27(02):47.[doi:10.19680/j.cnki.1004-4388.2018.02.008]
 LI Junxian.Optimization of testing techniques for wells with formation sand production[J].Well Testing,2018,27(01):47.[doi:10.19680/j.cnki.1004-4388.2018.02.008]
[7]田向东,康 露,杨 志,等.海上油气井快速诱喷测试技术[J].油气井测试,2018,27(02):41.[doi:10.19680/j.cnki.1004-4388.2018.02.007]
 TIAN Xiangdong,KANG Lu,YANG Zhi,et al.Fast testing of induced flows in offshore oil/gas wells[J].Well Testing,2018,27(01):41.[doi:10.19680/j.cnki.1004-4388.2018.02.007]
[8]张 毅,于丽敏,任勇强,等.一种新型可降解压裂封隔器坐封球[J].油气井测试,2018,27(02):53.[doi:10.19680/j.cnki.1004-4388.2018.02.009]
 ZHANG Yi,YU Limin,REN Yongqiang,et al.A new type of degradable setting ball for fracturing packers[J].Well Testing,2018,27(01):53.[doi:10.19680/j.cnki.1004-4388.2018.02.009]
[9]褚春波,郭 权,黄小云,等.有限元分析径向水力压裂裂缝扩展影响因素[J].油气井测试,2018,27(02):59.[doi:10.19680/j.cnki.1004-4388.2018.02.010]
 CHU Chunbo,GUO Quan,HUANG Xiaoyun,et al.Finiteelement analysis on influencing factors for propagation of fractures induced in radial jet hydraulic fracturing[J].Well Testing,2018,27(01):59.[doi:10.19680/j.cnki.1004-4388.2018.02.010]
[10]庞伟.酸性气藏深井产能试井方法[J].油气井测试,2018,27(02):67.[doi:10.19680/j.cnki.1004-4388.2018.02.011]
 PANG Wei.Deliverability test method for deep sour gas wells[J].Well Testing,2018,27(01):67.[doi:10.19680/j.cnki.1004-4388.2018.02.011]
[11]马金良,王方祥,王颖,等.油管防溢通井规的研制[J].油气井测试,2020,29(06):27.[doi:10.19680/j.cnki.1004-4388.2020.06.005]
 MA Jinliang,WANG Fangxiang,WANG Ying,et al.Development of an overflowproof drift size gauge tool[J].Well Testing,2020,29(01):27.[doi:10.19680/j.cnki.1004-4388.2020.06.005]
[12]郭权. 大庆油田扶杨油层压后水性识别新方法[J].油气井测试,2021,30(05):55.[doi:10.19680/j.cnki.1004-4388.2021.05.010]
 GUO Quan. A new method for water identification of Fuyang oil reservoir after formation in Daqing Oilfield[J].Well Testing,2021,30(01):55.[doi:10.19680/j.cnki.1004-4388.2021.05.010]
[13]庞振力,刘孝强,季鹏,等. 139.7 mm套管高温高压测试封隔器研制[J].油气井测试,2021,30(06):22.[doi:10.19680/j.cnki.1004-4388.2021.06.004]
 PANG Zhenli,LIU Xiaoqiang,JI Peng,et al. Development of high temperature and high pressure testing packer for casing with diameter of 139.7 mm[J].Well Testing,2021,30(01):22.[doi:10.19680/j.cnki.1004-4388.2021.06.004]
[14]姚磊. 稠油油藏试油测试资料分析[J].油气井测试,2022,31(04):68.[doi:10.19680/j.cnki.1004-4388.2022.04.012]
 [J].Well Testing,2022,31(01):68.[doi:10.19680/j.cnki.1004-4388.2022.04.012]

更新日期/Last Update: 2018-04-25