[1]刘长印. 一种水平井压裂裂缝定量描述方法[J].油气井测试,2020,29(05):1-5.[doi:10.19680/j.cnki.1004-4388.2020.05.001]
 LIU Changyin. A quantitative description method for horizontal well fracture[J].Well Testing,2020,29(05):1-5.[doi:10.19680/j.cnki.1004-4388.2020.05.001]
点击复制

 一种水平井压裂裂缝定量描述方法()
分享到:

《油气井测试》[ISSN:1006-6977/CN:12-1485/TE]

卷:
29卷
期数:
2020年05期
页码:
1-5
栏目:
出版日期:
2020-10-25

文章信息/Info

Title:
 A quantitative description method for horizontal well fracture
文章编号:
1004-4388(2020)05-0001-05
作者:
 刘长印
 中国石化石油勘探开发研究院采油所 ·中国石油化工集团公司海相油气藏开发重点实验室 北京 100083
Author(s):
 LIU Changyin
 Oil Production Institute of Sinopec Petroleum Exploration and Development Research Institute · Key Laboratory of Marine Oil and Gas Reservoir of Sinopec, Beijing 100083, China
关键词:
 水平井 压裂 裂缝形态 裂缝复杂程度 定量评价 评价系数 G函数曲线
Keywords:
 horizontal well fracturing fracture geometry fracture complexity quantitative evaluation evaluation coefficient G function curve
分类号:
TE357
DOI:
10.19680/j.cnki.1004-4388.2020.05.001
文献标志码:
A
摘要:
 针对水平井压裂后裂缝形态及复杂程度缺乏有效评价手段的问题,研究了一种水平井压裂裂缝复杂程度定量评价的方法。利用压降数据计算得到G函数曲线图版,拟合时叠加导数曲线在裂缝闭合点前呈现“上凸”,表明具有裂缝发育的特征。根据叠加导数曲线“上凸”波动大小和次数将G函数曲线分为四种曲线类型并进行量化,依据其反应的裂缝复杂程度,分别赋予不同的权重值;加入水平井压裂总段数、每种类型裂缝段数,计算水平井压裂裂缝复杂程度评价系数。7口井计算应用,评价系数越高,压后效果越好,通过该值与压后产量交汇分析得出两者的相关系数达09239,证明了该方法具有一定的可行性,实现了裂缝复杂程度评价定量化,为压裂效果评价提供了理论依据。
Abstract:
 A quantitative method to evaluate the fracture complexity of horizontal wells has been studied in view of the problem that 〖JP2〗there is no effective method to evaluate the fracture geometry and complexity for horizontal wells after fracturing. The graph of G function〖JP〗 curve was calculated by using the pressure drop data. When matching, if the superposed derivative curve is “convex” before the fracture closure point, it indicates that the formation has the characteristics of fracture development. The G function curve is divided into four types and quantified according to the amplitude and frequency of “convex” fluctuation on the superposed derivative curve. Different weight values will be given to each type according to the complexity reflected. The evaluation coefficient of fracture complexity of horizontal well is calculated by adding the total number of fracture sections of horizontal well and the number of fracture sections of each type. The application of 7 wells shows that the higher the evaluation coefficient is, the better the effect after fracturing is. Through the intersection analysis of the value and the output after fracturing, the correlation coefficient of the two is 09239, which proves that the method is feasible to a certain extent, realizes the quantitative evaluation of fracture complexity, and provides a theoretical basis for the evaluation of fracturing effect.

相似文献/References:

[1]何春明,胡峰,刘哲.深层海相碳酸盐岩储层水平井分段酸压技术研究[J].油气井测试,2013,22(05):0.
[2]聂彬,刘月田.特低丰度薄层油藏水平井开发效果评价体系研究[J].油气井测试,2013,22(05):0.
[3]朱明富.大牛地气田水平井试气工艺浅析[J].油气井测试,2013,22(05):0.
[4]曹银萍,黄宇曦,于凯强,等. 基于ANSYS Workbench完井管柱流固耦合振动固有频率分析[J].油气井测试,2018,27(01):1.[doi:10.19680/j.cnki.1004-4388.2018.01.001]
 CAO Yinping,HUANG Yuxi,YU Kaiqiang,et al. Natural frequency analysis for fluidsolid coupling vibration of completion string based on ANSYS workbench[J].Well Testing,2018,27(05):1.[doi:10.19680/j.cnki.1004-4388.2018.01.001]
[5]高 超,艾 昆,高 辉,等. 基于施工压力曲线的综合滤失系数测试方法及压裂参数优化[J].油气井测试,2018,27(01):8.[doi:10.19680/j.cnki.1004-4388.2018.01.002]
 GAO Chao,AI Kun,GAO Hui,et al.Test method of total leak-off coefficient and optimization of fracturing parameters based on operation pressure curves[J].Well Testing,2018,27(05):8.[doi:10.19680/j.cnki.1004-4388.2018.01.002]
[6]欧阳伟平.致密气藏分段压裂水平井的不稳定压力与产量综合分析方法[J].油气井测试,2018,27(01):14.[doi:10.19680/j.cnki.1004-4388.2018.01.003]
 OUYANG Weiping. Comprehensive analysis method for transient pressure and production of multistage fractured horizontal well in tight gas reservoirs[J].Well Testing,2018,27(05):14.[doi:10.19680/j.cnki.1004-4388.2018.01.003]
[7]蒋 秀,张艳玲,王江云,等.水力压裂过程中套管内流动冲蚀损伤规律研究[J].油气井测试,2018,27(01):48.[doi:10.19680/j.cnki.1004-4388.2018.01.008]
 JIANG Xiu,ZHANG Yanling,WANG Jiangyun,et al.Erosion pattern of flow field in casing during hydraulic fracturing[J].Well Testing,2018,27(05):48.[doi:10.19680/j.cnki.1004-4388.2018.01.008]
[8]周小林,高志华,张 冲.龙凤山气田大通径免钻桥塞分段压裂先导试验[J].油气井测试,2018,27(01):62.[doi:10.19680/j.cnki.1004-4388.2018.01.010]
 ZHOU Xiaolin,GAO Zhihua,ZHANG Chong. Pilot tests of staged fracturing involving largediameter drillfree bridge plugs in the Longfengshan gas field[J].Well Testing,2018,27(05):62.[doi:10.19680/j.cnki.1004-4388.2018.01.010]
[9]魏 聪,陈宝新,刘 敏,等. 基于反褶积技术的S气井不稳定试井解释[J].油气井测试,2018,27(01):73.[doi:10.19680/j.cnki.1004-4388.2018.01.012]
 WEI Cong,CHEN Baoxin,LIU Min,et al. Interpretation of pressure transient well testing data of S gas well based on deconvolution technique[J].Well Testing,2018,27(05):73.[doi:10.19680/j.cnki.1004-4388.2018.01.012]
[10]张中宝.塔河油田深抽杆式泵一体化管柱工艺[J].油气井测试,2018,27(02):27.[doi:10.19680/j.cnki.1004-4388.2018.02.005]
 ZHANG Zhongbao.Deep integrated rod pumping string applied in Tahe Oilfield[J].Well Testing,2018,27(05):27.[doi:10.19680/j.cnki.1004-4388.2018.02.005]
[11]肖寒.威远区块页岩气水平井基于灰色关联分析的产能评价方法[J].油气井测试,2018,27(04):73.[doi:10.19680/j.cnki.1004-4388.2018.04.012]
 [J].Well Testing,2018,27(05):73.[doi:10.19680/j.cnki.1004-4388.2018.04.012]
[12]杜卫刚,谢梦春,李博,等. 浅表层小井眼长水平段裸眼砾石防砂技术[J].油气井测试,2020,29(02):50.[doi:10.19680/j.cnki.1004-4388.2020.02.009]
 DU Weigang,XIE Mengchun,LI Bo,et al. Openhole gravel sand control technology for long horizontal section of shallow slim hole[J].Well Testing,2020,29(05):50.[doi:10.19680/j.cnki.1004-4388.2020.02.009]
[13]沈产量,张景皓,张璐,等. 基于离散裂缝方法的多段压裂水平井数值试井模型[J].油气井测试,2021,30(01):1.[doi:10.19680/j.cnki.1004-4388.2021.01.001]
 SHEN Chanliang,ZHANG Jinghao,ZHANG Lu,et al. Numerical well test model of multistage fractured horizontal well based on discrete fracture method[J].Well Testing,2021,30(05):1.[doi:10.19680/j.cnki.1004-4388.2021.01.001]
[14]焦金龙. XS14-P2水平井落井电缆打捞技术[J].油气井测试,2021,30(02):34.[doi:10.19680/j.cnki.1004-4388.2021.02.007]
 JIAO Jinlong.Cable fishing technology in horizontal well XS14-P2[J].Well Testing,2021,30(05):34.[doi:10.19680/j.cnki.1004-4388.2021.02.007]
[15]蒋佩,曾凌翔,朱炬辉,等. 湖北深层页岩气水平井储层改造关键技术[J].油气井测试,2022,31(02):31.[doi:10.19680/j.cnki.1004-4388.2022.02.006]
 JIANG Pei,ZENG Lingxiang,ZHU Juhui,et al.A key technology for reservoir fracturing of deep shale gas horizontal wells in Hubei Province[J].Well Testing,2022,31(05):31.[doi:10.19680/j.cnki.1004-4388.2022.02.006]
[16]梁莹. 川西中浅层井低密度支撑剂脉冲压裂技术[J].油气井测试,2022,31(02):36.[doi:10.19680/j.cnki.1004-4388.2022.02.007]
 LIANG Ying. Pulse fracturing technology with lowdensity proppant for midshallow wells in western Sichuan Basin[J].Well Testing,2022,31(05):36.[doi:10.19680/j.cnki.1004-4388.2022.02.007]
[17]闫正和. 水平井产出剖面监测新方法[J].油气井测试,2022,31(02):49.[doi:10.19680/j.cnki.1004-4388.2022.02.009]
 YAN Zhenghe. New methods for monitoring the production profile of horizontal wells[J].Well Testing,2022,31(05):49.[doi:10.19680/j.cnki.1004-4388.2022.02.009]
[18]邓勇,陆燕妮,马成,等.底水油藏水平井临界产量计算方法[J].油气井测试,2022,31(04):1.[doi:10.19680/j.cnki.1004-4388.2022.04.001]
 [J].Well Testing,2022,31(05):1.[doi:10.19680/j.cnki.1004-4388.2022.04.001]
[19]吴明录 ,李涛,赵高龙,等. 双重孔隙介质三区复合油藏水平井试井模型[J].油气井测试,2022,31(04):6.[doi:10.19680/j.cnki.1004-4388.2022.04.002]
 [J].Well Testing,2022,31(05):6.[doi:10.19680/j.cnki.1004-4388.2022.04.002]
[20]郑道明. 东胜气田连续油管水平井开滑套工艺[J].油气井测试,2022,31(05):33.[doi:10.19680/j.cnki.1004-4388.2022.05.007]
 [J].Well Testing,2022,31(05):33.[doi:10.19680/j.cnki.1004-4388.2022.05.007]

备注/Memo

备注/Memo:
 2019-11-19收稿,2020-08-12修回,2020-08-25接受,2020-10-20网络版发表
国家科技重大专项“大型油气田及煤层气开发”中课题“中西部地区碎屑岩领域勘探关键技术”(2016ZX05002-005)
刘长印,男,1965年出生,博士,高级工程师,2004年毕业于西南石油大学石油与天然气开发专业,主要从事试油测试、压裂工作。电话010-82316405;Email:jxdzslcy @163.com。通信地址:北京市海淀区学院路31#,邮政编码:100083。
更新日期/Last Update: 2020-11-16