[1]罗 政.贵州煤层气试井解释基础参数优选[J].油气井测试,2018,27(01):68-72.[doi:10.19680/j.cnki.1004-4388.2018.01.011]
 LUO Zheng. Optimization of basic parameters for Guizhou coalbed gas well test interpretation[J].Well Testing,2018,27(01):68-72.[doi:10.19680/j.cnki.1004-4388.2018.01.011]
点击复制

贵州煤层气试井解释基础参数优选()
分享到:

《油气井测试》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2018年01期
页码:
68-72
栏目:
出版日期:
2018-02-25

文章信息/Info

Title:
 Optimization of basic parameters for Guizhou coalbed gas well test interpretation
文章编号:
1004-4388(2018)01-0068-05
作者:
罗  政
贵州省煤田地质局实验室  贵州贵阳  550081
Author(s):
 LUO Zheng
 Laboratory of Guizhou Coal Mine Geology Administration Bureau, Guiyang, Guizhou 550081, China
关键词:
煤层气试井解释基础参数孔隙度综合压缩系数参数优选
Keywords:
 

coalbed gas well test interpretation porosity total compressibility

coefficient parameters optimization

分类号:
TE353
DOI:
10.19680/j.cnki.1004-4388.2018.01.011
文献标志码:
B
摘要:

煤层气井试井解释中基础参数的取值对储层渗透率、探测半径、表皮系数和断层(裂缝)距离等的计

算影响较大,取值不准确容易造成试井结果与真实储层参数之间偏差较大,不利于指导煤层气试井工程施工和煤层气井储层评价研究。以贵州煤层气参数井试井工程试

验和区域煤层测试资料为依据,研究黔西煤田、黔北煤田的煤质特征及煤层孔隙度,模拟不同区域煤层综合压缩系数的取值范围。结果显示,黔西煤田煤层综合压缩系

数为6.73×10-5MPa-1、孔隙度为4.89%;黔北煤田煤层综合压缩系数为3.06×10-5MPa-1、孔隙度为5.21%,流体水黏度取值范围为0.5~1.2 mPa·s、水地层
体积系数取值为1。通过区域试井试验和基础参数值优选,提高对储层地质评价分析的准确性,其结果可为煤层气试井解释、工程设计研究提供借鉴和参考。

Abstract:

he values of basic parameters for coalbed gas well test interpretation have

great influence on the determination of permeability, investigation radius, skin factor, and distance from fault and so on. The inaccurate values

of basic parameters may cause the great deviation of well testing result from the actual formation parameters, which may bring out the

inappropriate well testing operation and evaluation for coalbed gas well. In this paper, original data of well testing in Western Guizhou Coal

Mine and Northern Guizhou Coal Mine were used in simulation to determine basic parameters in different regions. The results show that the average

total compressibility coefficient is 6.73×10-5MPa-1 for coal mines in western Guizhou and 3.06×10-5MPa-1 for coal mines in northern Guizhou.
The average porosity is 4.87% for Zhina Coal Mine, 4.90% for Shuicheng Panxian Coal Mine, 4.89% for Western Guizhou

Coal Mine, and 5.21% for Northern Guizhou Coal Mine. The water viscosity ranges in 0.5~1.2 mPa·s and the formation volume factor of

water is approximately 1. These results can provide valuable references for coalbed gas well test interpretation and engineering design.

相似文献/References:

[1]卓红,何秀玲,王新海,等.井下关井测压技术改进研究[J].油气井测试,2013,22(05):0.
[2]欧阳伟平.致密气藏分段压裂水平井的不稳定压力与产量综合分析方法[J].油气井测试,2018,27(01):14.[doi:10.19680/j.cnki.1004-4388.2018.01.003]
 OUYANG Weiping. Comprehensive analysis method for transient pressure and production of multistage fractured horizontal well in tight gas reservoirs[J].Well Testing,2018,27(01):14.[doi:10.19680/j.cnki.1004-4388.2018.01.003]
[3]常宝华,强小龙,杨亚涛,等.低渗透气藏压裂水平井试井曲线特征及影响因素[J].油气井测试,2018,27(02):1.[doi:10.19680/j.cnki.1004-4388.2018.02.001]
 CHANG Baohua,QIANG Xiaolong,YANG Yatao,et al.Well testing curves of fractured horizontal wells in lowpermeability gas reservoirs: characteristics and influencing factors[J].Well Testing,2018,27(01):1.[doi:10.19680/j.cnki.1004-4388.2018.02.001]
[4]付建民,冯卫华,马长亮,等.渤海油田井下关井测压工艺技术[J].油气井测试,2018,27(05):61.[doi:10.19680/j.cnki.1004-4388.2018.05.011]
 [J].Well Testing,2018,27(01):61.[doi:10.19680/j.cnki.1004-4388.2018.05.011]
[5]孙达.油气井压力恢复试井解释关键技术[J].油气井测试,2018,27(06):73.[doi:10.19680/j.cnki.1004-4388.2018.06.013]
 [J].Well Testing,2018,27(01):73.[doi:10.19680/j.cnki.1004-4388.2018.06.013]
[6]暴喜涛,闫怡飞,杨江,等.基于V型河道边界的煤层气井压力动态响应分析[J].油气井测试,2019,28(05):1.[doi:10.19680/j.cnki.1004-4388.2019.05.001]
 BAO Xitao,YAN Yifei,YANG Jiang,et al.Dynamic pressure response analysis of coalbed methane well based on Vtype channel boundary[J].Well Testing,2019,28(01):1.[doi:10.19680/j.cnki.1004-4388.2019.05.001]
[7]于伟强,赵洪涛,房鑫磊,等. 基于快速傅里叶变换的海上油气井试井解释潮汐效应消除方法[J].油气井测试,2020,29(06):1.[doi:10.19680/j.cnki.1004-4388.2020.06.001]
 YU Weiqiang,ZHAO Hongtao,FANG Xinlei,et al. Elimination of tidal effect in well test interpretation of offshore oil and gas wells based on fast Fourier transform[J].Well Testing,2020,29(01):1.[doi:10.19680/j.cnki.1004-4388.2020.06.001]
[8]沈产量,张景皓,张璐,等. 基于离散裂缝方法的多段压裂水平井数值试井模型[J].油气井测试,2021,30(01):1.[doi:10.19680/j.cnki.1004-4388.2021.01.001]
 SHEN Chanliang,ZHANG Jinghao,ZHANG Lu,et al. Numerical well test model of multistage fractured horizontal well based on discrete fracture method[J].Well Testing,2021,30(01):1.[doi:10.19680/j.cnki.1004-4388.2021.01.001]
[9]吴晓光,袁莉,李萌,等. 川西坳陷洛带气田致密砂岩气藏压力恢复试井特征分析[J].油气井测试,2021,30(01):59.[doi:10.19680/j.cnki.1004-4388.2021.01.011]
 WU Xiaoguang,YUAN Li,LI Meng,et al.Pressure buildup test characteristics of tight sandstone gas reservoir in Luodai gas field, Western Sichuan depression[J].Well Testing,2021,30(01):59.[doi:10.19680/j.cnki.1004-4388.2021.01.011]
[10]于伟强,劳文韬,李纪智,等.基于TMD工具箱海上油气井试井解释潮汐效应消除方法[J].油气井测试,2022,31(01):62.[doi:10.19680/j.cnki.1004-4388.2022.1.011]
 YU Weiqiang,LAO Wentao,LI Jizhi,et al. Tidal effect elimination method in well testing interpretation of offshore oil and gas wells based on TMD toolbox[J].Well Testing,2022,31(01):62.[doi:10.19680/j.cnki.1004-4388.2022.1.011]

备注/Memo

备注/Memo:
 2017-07-17收稿,2017-12-03修回,2017-12-08接受,2018-03-30网络发表

罗政,男,1983年出生,工程师,2007年毕业于贵州大学材料化学专业,主要从事岩矿

测试及煤层气页岩气检测检验研究工作。电话:13310400307;Email:568650184@qq.com。地址:贵州省贵阳市观山湖区阳关大道贵州煤田地质科技中心实验室,邮政

编码:550081。

更新日期/Last Update: 2018-04-26