[1]贾振甲,孙 达,李方宇,等.致密油储层试油分布式光纤传感监测技术[J].油气井测试,2018,27(03):58-65.[doi:10.19680/j.cnki.1004-4388.2018.03.010]
 JIA Zhenjia,SUN Da,LI Fangyu,et al.Monitoring technique involving distributed optical fiber sensor for well testingin tight oil reservoirs[J].Well Testing,2018,27(03):58-65.[doi:10.19680/j.cnki.1004-4388.2018.03.010]
点击复制

致密油储层试油分布式光纤传感监测技术()
分享到:

《油气井测试》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2018年03期
页码:
58-65
栏目:
出版日期:
2018-06-25

文章信息/Info

Title:
Monitoring technique involving distributed optical fiber sensor for well testingin tight oil reservoirs
文章编号:
1004-4388(2018)03-0058-08
作者:
贾振甲1 孙  达1 李方宇1 雷  鸣2 尹后凤3 王少宁3
1.中国石油吉林油田分公司油气藏评价部  吉林松原  138000
2.中国石油集团渤海钻探工程有限公司第五钻井公司  河北沧州  062450
3.中国石油华北油田分公司  河北任丘  062552
Author(s):
JIA Zhenjia1 SUN Da1 LI Fangyu1 LEI Ming2 YIN Houfeng3 WANG Shaoning3
 1. Reservoir Appraisal Department, PetroChina Jilin Oilfield Company Limited, Songyuan, Jilin 138000, China
2. No.5 Drilling Engineering Branch, CNPC Bohai Drilling Engineering Co.,Ltd., Cangzhou, Hebei 062450, China
3. PetroChina Huabei Oilfield Company, Renqiu, Hebei 062552, China
关键词:
致密油试油分布式光纤体积压裂温度监测产量贡献率
Keywords:
 tight oil well testing distributed optical fiber volume fracturing temperature monitoring productivity contribution
分类号:
TE353
DOI:
10.19680/j.cnki.1004-4388.2018.03.010
文献标志码:
B
摘要:
 分布式光纤传感监测技术利用光纤系统配合模块化井下工具,实时监测井筒中气/液体运动及井筒和地层之间的物质交换。该项技术可用于监测生产层段的温差、流体性质变化,计算单段、单簇的产能贡献率等参数,对水平井压后分段产能进行评价,为压裂参数设计及后期作业等措施提供参考依据。松辽盆地A井采用蓄能式体积压裂工艺进行了改造,应用连续油管式光纤测试技术对该井在不同生产制度下的温差变化进行监测。通过拟合模拟生产曲线与实测生产曲线,获得各产层对压裂后产能贡献率。监测分析发现,泉四段的57小层的第六、七、八段为主力生产层,产量贡献占全井的64 %~68 %;第九、十段在4 mm油嘴工作制度下表现出高产量,但含水率极高,可实施堵水作业以降低含水率。该技术在国内油气田监测中应用较少,应加大在致密油储层改造、储气库和高压气井中的推广力度。
Abstract:
 The monitoring technique involving distributed optical fiber sensor can monitor the gas/liquid movements in wellbore and the mass exchange between wellbore and formation in real time by using the optical systems together with modularized downhole tools. The technique can be deployed to monitor temperature differences and fluid properties in producing intervals, calculate the contribution to deliverability for individual intervals and clusters, and evaluate the deliverability of horizontal wells after staged fracturing, so as to provide reliable data for fracturing parameter design and subsequent operations. The CTconveyed optical fiber monitoring technique was used to monitor the temperature differences under different production systems in Well A of the Songliao Basin, which was fractured by energystorage volume fracturing. Through fitting simulated production curves and actual production curves, the contributions of pay zones to postfracturing deliverability were determined. Monitoring results show that Interval 6, 7 and 8 in Sublayer 57 of Quan-4 Member are major pay zones, which contribute 64%–68% of the total well deliverability, and Intervals 9 and 10 reveal high productivity when producing 4 mm nozzle, but with high water cut. Waterplugging should be performed to reduce the water cut in Intervals 9 and 10. The proposed technique is worthy of popularization in stimulation of tight oil reservoirs, gas storages and highpressure gas wells.

相似文献/References:

[1]曹银萍,黄宇曦,于凯强,等. 基于ANSYS Workbench完井管柱流固耦合振动固有频率分析[J].油气井测试,2018,27(01):1.[doi:10.19680/j.cnki.1004-4388.2018.01.001]
 CAO Yinping,HUANG Yuxi,YU Kaiqiang,et al. Natural frequency analysis for fluidsolid coupling vibration of completion string based on ANSYS workbench[J].Well Testing,2018,27(03):1.[doi:10.19680/j.cnki.1004-4388.2018.01.001]
[2]马金良,刘泽宇,李春宁,等.一趟管柱分层射孔与水力泵排液联作技术[J].油气井测试,2018,27(02):23.[doi:10.19680/j.cnki.1004-4388.2018.02.004]
 MA Jinliang,LIU Zeyu,LI Chunning,et al.Integration of layered perforation and flowback by hydraulic pump in one trip[J].Well Testing,2018,27(03):23.[doi:10.19680/j.cnki.1004-4388.2018.02.004]
[3]高辉.螺杆泵与水力泵在水平井排液求产中的适应性分析[J].油气井测试,2018,27(03):22.[doi:10.19680/j.cnki.1004-4388.2018.03.004]
 GAO Hui.Adaptability analysis of screw pump and hydraulic pump during the production of horizontal wells[J].Well Testing,2018,27(03):22.[doi:10.19680/j.cnki.1004-4388.2018.03.004]
[4]文宏武,王靖淇,刘萍,等.双空心抽油杆螺杆泵热采试油技术 [J].油气井测试,2018,27(05):24.[doi:10.19680/j.cnki.1004-4388.2018.05.005]
 WEN Hongwu,WANG Jingqi,LIU Ping,et al.Screw pump thermal recovery test technology driven by double hollow sucker rod[J].Well Testing,2018,27(03):24.[doi:10.19680/j.cnki.1004-4388.2018.05.005]
[5]刘玲莉,彭贤强,陈洪地,等.气井针型节流阀失效因素模拟分析[J].油气井测试,2020,29(02):7.[doi:10.19680/j.cnki.1004-4388.2020.02.002]
 LIU Lingli,PENG Xianqiang,CHEN Hongdi,et al.Simulation analysis of failure factors for needle throttle valve in gas well[J].Well Testing,2020,29(03):7.[doi:10.19680/j.cnki.1004-4388.2020.02.002]
[6]吴志均,段德祥,王文广,等.明格布拉克构造“五高”深井试油测试技术[J].油气井测试,2020,29(02):13.[doi:10.19680/j.cnki.1004-4388.2020.02.003]
 WU Zhijun,DUAN Dexiang,WANG Wenguang,et al.The oil test technology for “five high” deep well in Mingbulak structure[J].Well Testing,2020,29(03):13.[doi:10.19680/j.cnki.1004-4388.2020.02.003]
[7]焦金龙,卢金柱,周海洋.双级密封抽汲防喷盒[J].油气井测试,2020,29(03):27.[doi:10.19680/j.cnki.1004-4388.2020.03.005]
 JIAO Jinlong,LU Jinzhu,ZHOU Haiyang.Doublestage sealed pumping blowout preventing box[J].Well Testing,2020,29(03):27.[doi:10.19680/j.cnki.1004-4388.2020.03.005]
[8]马金良,王方祥,王颖,等.油管防溢通井规的研制[J].油气井测试,2020,29(06):27.[doi:10.19680/j.cnki.1004-4388.2020.06.005]
 MA Jinliang,WANG Fangxiang,WANG Ying,et al.Development of an overflowproof drift size gauge tool[J].Well Testing,2020,29(03):27.[doi:10.19680/j.cnki.1004-4388.2020.06.005]
[9]肖志永. 开式抽汲排液中P-T封隔器失封原因分析[J].油气井测试,2021,30(05):18.[doi:10.19680/j.cnki.1004-4388.2021.05.003]
 XIAO Zhiyong. Analysis of failure causes of PT packer in open swabbing and drainage[J].Well Testing,2021,30(03):18.[doi:10.19680/j.cnki.1004-4388.2021.05.003]
[10]郭权. 大庆油田扶杨油层压后水性识别新方法[J].油气井测试,2021,30(05):55.[doi:10.19680/j.cnki.1004-4388.2021.05.010]
 GUO Quan. A new method for water identification of Fuyang oil reservoir after formation in Daqing Oilfield[J].Well Testing,2021,30(03):55.[doi:10.19680/j.cnki.1004-4388.2021.05.010]

备注/Memo

备注/Memo:
 2017-12-10收稿,2018-03-15修回,2018-04-01接受,2018-05-10网络版发表
国家科技重大专项“多气合采钻完井技术和储层保护”(2016ZX05066)
贾振甲,男,1984年出生,工程师,2011年毕业于中国地质大学(武汉)油气田开发工程专业,主要从事致密油藏压裂技术研究工作。电话:0438-6262127,18204388069;Email:jiazj@petrochina.com.cn。地址:吉林省松原市宁江区沿江东路1219号,邮政编码:138000。
更新日期/Last Update: 2018-08-12