[1]杜卫刚,谢梦春,李博,等. 浅表层小井眼长水平段裸眼砾石防砂技术[J].油气井测试,2020,29(02):50-55.[doi:10.19680/j.cnki.1004-4388.2020.02.009]
 DU Weigang,XIE Mengchun,LI Bo,et al. Openhole gravel sand control technology for long horizontal section of shallow slim hole[J].Well Testing,2020,29(02):50-55.[doi:10.19680/j.cnki.1004-4388.2020.02.009]
点击复制

 浅表层小井眼长水平段裸眼砾石防砂技术()
分享到:

《油气井测试》[ISSN:1006-6977/CN:61-1281/TN]

卷:
29卷
期数:
2020年02期
页码:
50-55
栏目:
出版日期:
2020-04-25

文章信息/Info

Title:
 Openhole gravel sand control technology for long horizontal section of shallow slim hole
文章编号:
1004-4388(2020)02-0050-06
作者:
 杜卫刚谢梦春李博陈肖帆关利永顾冰
 中国石油集团海洋工程有限公司天津分公司 天津 300451
Author(s):
 DU Weigang XIE Mengchun LI Bo CHEN Xiaofan GUAN Liyong GU Bing
 Tianjin Branch of CNPC Ocean Engineering Limited Company, Tianjin 300451, China
关键词:
 水平井 裸眼砾石充填 超轻质陶粒 防砂 小井眼 完井
Keywords:
 horizontal well openhole gravel filling ultralight ceramsite sand control slim hole completion
分类号:
TE257
DOI:
10.19680/j.cnki.1004-4388.2020.02.009
文献标志码:
B
摘要:
渤海油田某浅表层井水平段为1524 mm小井眼,给防砂完井带来诸多困难。结合邻井防砂过程,对浅层小井眼防砂难点进行分析,总结出影响裸眼砾石充填的四大因素,优选出顶部砾石充填防砂工艺,形成了该井防砂方案。现场通过优化施工工序提高井壁稳定性,采用等密度携砂液保持泥饼稳定降低滤失,使用超轻质陶粒提高流动性减小滤失影响等措施,成功实施浅表层小井眼裸眼砾石充填防砂。投产后采用4~5 mm油嘴生产,产量逐渐稳定在150 m3/d左右,生产压力稳定,未见出砂征兆。该技术为浅表层小井眼防砂及类似复杂井防砂提供了借鉴。
Abstract:
 The horizontal section of a shallow surface well in Bohai Oilfield is slim hole with the diameter of 1524 mm, which brings many difficulties to sand control and completion. Combining with the sand control process of adjacent wells, the difficulty of sand control in shallow slim hole is analyzed. Four factors affecting open hole gravel filling are summarized, the sand control technology of top gravel filling is optimized, and the sand control scheme of this well is formed. Through optimizing the construction process to improve wellbore stability, using equal density sandcarrying fluid to keep mud cake stable and reduce filtration, and using ultralight ceramsite to improve fluidity and reduce filtration effect, sand control by openhole gravel filling in shallow slim hole was successfully implemented. After put into operation with 4-5 mm oil nozzle, the production rate was gradually stabilized at about 150 m3/d, the production pressure was stable, and there was no sign of sanding. This technology provides a reference for sand control in shallow slim holes and similar complex wells.

相似文献/References:

[1]何春明,胡峰,刘哲.深层海相碳酸盐岩储层水平井分段酸压技术研究[J].油气井测试,2013,22(05):0.
[2]聂彬,刘月田.特低丰度薄层油藏水平井开发效果评价体系研究[J].油气井测试,2013,22(05):0.
[3]朱明富.大牛地气田水平井试气工艺浅析[J].油气井测试,2013,22(05):0.
[4]曹银萍,黄宇曦,于凯强,等. 基于ANSYS Workbench完井管柱流固耦合振动固有频率分析[J].油气井测试,2018,27(01):1.[doi:10.19680/j.cnki.1004-4388.2018.01.001]
 CAO Yinping,HUANG Yuxi,YU Kaiqiang,et al. Natural frequency analysis for fluidsolid coupling vibration of completion string based on ANSYS workbench[J].Well Testing,2018,27(02):1.[doi:10.19680/j.cnki.1004-4388.2018.01.001]
[5]高 超,艾 昆,高 辉,等. 基于施工压力曲线的综合滤失系数测试方法及压裂参数优化[J].油气井测试,2018,27(01):8.[doi:10.19680/j.cnki.1004-4388.2018.01.002]
 GAO Chao,AI Kun,GAO Hui,et al.Test method of total leak-off coefficient and optimization of fracturing parameters based on operation pressure curves[J].Well Testing,2018,27(02):8.[doi:10.19680/j.cnki.1004-4388.2018.01.002]
[6]欧阳伟平.致密气藏分段压裂水平井的不稳定压力与产量综合分析方法[J].油气井测试,2018,27(01):14.[doi:10.19680/j.cnki.1004-4388.2018.01.003]
 OUYANG Weiping. Comprehensive analysis method for transient pressure and production of multistage fractured horizontal well in tight gas reservoirs[J].Well Testing,2018,27(02):14.[doi:10.19680/j.cnki.1004-4388.2018.01.003]
[7]蒋 秀,张艳玲,王江云,等.水力压裂过程中套管内流动冲蚀损伤规律研究[J].油气井测试,2018,27(01):48.[doi:10.19680/j.cnki.1004-4388.2018.01.008]
 JIANG Xiu,ZHANG Yanling,WANG Jiangyun,et al.Erosion pattern of flow field in casing during hydraulic fracturing[J].Well Testing,2018,27(02):48.[doi:10.19680/j.cnki.1004-4388.2018.01.008]
[8]周小林,高志华,张 冲.龙凤山气田大通径免钻桥塞分段压裂先导试验[J].油气井测试,2018,27(01):62.[doi:10.19680/j.cnki.1004-4388.2018.01.010]
 ZHOU Xiaolin,GAO Zhihua,ZHANG Chong. Pilot tests of staged fracturing involving largediameter drillfree bridge plugs in the Longfengshan gas field[J].Well Testing,2018,27(02):62.[doi:10.19680/j.cnki.1004-4388.2018.01.010]
[9]魏 聪,陈宝新,刘 敏,等. 基于反褶积技术的S气井不稳定试井解释[J].油气井测试,2018,27(01):73.[doi:10.19680/j.cnki.1004-4388.2018.01.012]
 WEI Cong,CHEN Baoxin,LIU Min,et al. Interpretation of pressure transient well testing data of S gas well based on deconvolution technique[J].Well Testing,2018,27(02):73.[doi:10.19680/j.cnki.1004-4388.2018.01.012]
[10]张中宝.塔河油田深抽杆式泵一体化管柱工艺[J].油气井测试,2018,27(02):27.[doi:10.19680/j.cnki.1004-4388.2018.02.005]
 ZHANG Zhongbao.Deep integrated rod pumping string applied in Tahe Oilfield[J].Well Testing,2018,27(02):27.[doi:10.19680/j.cnki.1004-4388.2018.02.005]
[11]肖寒.威远区块页岩气水平井基于灰色关联分析的产能评价方法[J].油气井测试,2018,27(04):73.[doi:10.19680/j.cnki.1004-4388.2018.04.012]
 [J].Well Testing,2018,27(02):73.[doi:10.19680/j.cnki.1004-4388.2018.04.012]
[12]刘长印. 一种水平井压裂裂缝定量描述方法[J].油气井测试,2020,29(05):1.[doi:10.19680/j.cnki.1004-4388.2020.05.001]
 LIU Changyin. A quantitative description method for horizontal well fracture[J].Well Testing,2020,29(02):1.[doi:10.19680/j.cnki.1004-4388.2020.05.001]
[13]沈产量,张景皓,张璐,等. 基于离散裂缝方法的多段压裂水平井数值试井模型[J].油气井测试,2021,30(01):1.[doi:10.19680/j.cnki.1004-4388.2021.01.001]
 SHEN Chanliang,ZHANG Jinghao,ZHANG Lu,et al. Numerical well test model of multistage fractured horizontal well based on discrete fracture method[J].Well Testing,2021,30(02):1.[doi:10.19680/j.cnki.1004-4388.2021.01.001]
[14]焦金龙. XS14-P2水平井落井电缆打捞技术[J].油气井测试,2021,30(02):34.[doi:10.19680/j.cnki.1004-4388.2021.02.007]
 JIAO Jinlong.Cable fishing technology in horizontal well XS14-P2[J].Well Testing,2021,30(02):34.[doi:10.19680/j.cnki.1004-4388.2021.02.007]
[15]蒋佩,曾凌翔,朱炬辉,等. 湖北深层页岩气水平井储层改造关键技术[J].油气井测试,2022,31(02):31.[doi:10.19680/j.cnki.1004-4388.2022.02.006]
 JIANG Pei,ZENG Lingxiang,ZHU Juhui,et al.A key technology for reservoir fracturing of deep shale gas horizontal wells in Hubei Province[J].Well Testing,2022,31(02):31.[doi:10.19680/j.cnki.1004-4388.2022.02.006]
[16]梁莹. 川西中浅层井低密度支撑剂脉冲压裂技术[J].油气井测试,2022,31(02):36.[doi:10.19680/j.cnki.1004-4388.2022.02.007]
 LIANG Ying. Pulse fracturing technology with lowdensity proppant for midshallow wells in western Sichuan Basin[J].Well Testing,2022,31(02):36.[doi:10.19680/j.cnki.1004-4388.2022.02.007]
[17]闫正和. 水平井产出剖面监测新方法[J].油气井测试,2022,31(02):49.[doi:10.19680/j.cnki.1004-4388.2022.02.009]
 YAN Zhenghe. New methods for monitoring the production profile of horizontal wells[J].Well Testing,2022,31(02):49.[doi:10.19680/j.cnki.1004-4388.2022.02.009]
[18]邓勇,陆燕妮,马成,等.底水油藏水平井临界产量计算方法[J].油气井测试,2022,31(04):1.[doi:10.19680/j.cnki.1004-4388.2022.04.001]
 [J].Well Testing,2022,31(02):1.[doi:10.19680/j.cnki.1004-4388.2022.04.001]
[19]吴明录 ,李涛,赵高龙,等. 双重孔隙介质三区复合油藏水平井试井模型[J].油气井测试,2022,31(04):6.[doi:10.19680/j.cnki.1004-4388.2022.04.002]
 [J].Well Testing,2022,31(02):6.[doi:10.19680/j.cnki.1004-4388.2022.04.002]
[20]郑道明. 东胜气田连续油管水平井开滑套工艺[J].油气井测试,2022,31(05):33.[doi:10.19680/j.cnki.1004-4388.2022.05.007]
 [J].Well Testing,2022,31(02):33.[doi:10.19680/j.cnki.1004-4388.2022.05.007]

备注/Memo

备注/Memo:
 2019-05-30收稿,2019-12-10修回,2020-02-10接受,2020-04-20 网络版发表
杜卫刚,男,工程师,2008年毕业于中国石油大学(华东)机械设计制造及自动化专业,现从事酸化、压裂、防砂等增产工作。电话:022-66306297,13512940743;Email: duwg.cpoe@cnpc.com.cn 。通信地址:天津市塘沽区福建北路1019号石油科技大厦,邮政编码:300451。
更新日期/Last Update: 2020-05-15