[1]李军贤.地层出砂井测试工艺优化[J].油气井测试,2018,27(02):47-52.[doi:10.19680/j.cnki.1004-4388.2018.02.008]
 LI Junxian.Optimization of testing techniques for wells with formation sand production[J].Well Testing,2018,27(02):47-52.[doi:10.19680/j.cnki.1004-4388.2018.02.008]
点击复制

地层出砂井测试工艺优化()
分享到:

《油气井测试》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2018年02期
页码:
47-52
栏目:
出版日期:
2018-04-25

文章信息/Info

Title:
Optimization of testing techniques for wells with formation sand production
文章编号:
1004-4388(2018)02-0047-06
作者:
李军贤
 中国石油大庆油田有限责任公司试油试采分公司  黑龙江大庆  163412
Author(s):
 LI Junxian
 Well Testing Company of PetroChina Daqing Oilfield Company Limited, Daqing, Heilongjiang 163412, China
关键词:
 测试工艺地层出砂出砂机理防砂工艺优化除砂器
Keywords:
 testing technique formation sand production sand production mechanism sand control process optimization desander
分类号:
TE353
DOI:
10.19680/j.cnki.1004-4388.2018.02.008
文献标志码:
B
摘要:
 为减小地层出砂砂粒、钻屑、高冲蚀性固相杂质冲蚀测试工具,避免地层塌陷及工具卡堵等,分析了地层出砂的自然因素和人为因素,提出了地层出砂的力学机理,阐明了地层出砂对地面测试工作造成的设备损坏、套管损坏及测试数据不准确等不良影响。通过采取井下工具结合填砾滤砂及地面测试增加滤砂工艺等方式对常规测试工艺进行防砂滤砂优化,从而除去流体中携带的砂粒。通过A区块T#3探井测试,选用井下工具结合填砾滤砂在井下通道中进行第一道滤砂;地面流程中采用除砂器依靠离心力和重力作用进行第二道除砂,过滤后的流体通过滤网和除砂筒之间的环形空间进入下游测试流程,除砂后流体中砂比达到002%以下,保证了测试工作的连续性。该工艺能减少砂粒对套管和测试设备的损害,提高了测试施工成功率,在地层出砂井的测试施工中取得了较好效果。
Abstract:
 To minimize the erosion on testing tools by sand, cutting, and highly erosive solids in formations and eliminate the possibility of formation collapse and tool sticking, the natural and human factors for formation sand production were analyzed, the mechanical mechanism of formation sand production was highlighted, and the negative impacts of sand production on surface testing (e.g. equipment damage, casing damage, and inaccurate testing data) were illustrated. Through application of downhole tools together with grave packing, sand filtering, combination of surface testing with sand filtering and other techniques, conventional testing techniques were optimized in view of sand control and sand filtering in order to remove sands carried in fluids. In Well T#3 in Block A, downhole tools together with gravel packing and sand filtering techniques were used as the first defense against sand production in flowing channels. Desanders were used on ground surface to provide the second defense against sand production by removing sands under centrifugal and gravity. Filtered fluid was delivered to downstream testing procedures through the annulus between filter mesh and desand barrel. Sand ratio in filtered fluid was below 002%, so that continuous testing operation can be maintained. By minimizing damages of sands to casing and testing tools, the technique can enhance success rate of testing operations. It has been satisfactory applied in testing for wells with formation sand production.

相似文献/References:

[1]曹银萍,黄宇曦,于凯强,等. 基于ANSYS Workbench完井管柱流固耦合振动固有频率分析[J].油气井测试,2018,27(01):1.[doi:10.19680/j.cnki.1004-4388.2018.01.001]
 CAO Yinping,HUANG Yuxi,YU Kaiqiang,et al. Natural frequency analysis for fluidsolid coupling vibration of completion string based on ANSYS workbench[J].Well Testing,2018,27(02):1.[doi:10.19680/j.cnki.1004-4388.2018.01.001]
[2]高 超,艾 昆,高 辉,等. 基于施工压力曲线的综合滤失系数测试方法及压裂参数优化[J].油气井测试,2018,27(01):8.[doi:10.19680/j.cnki.1004-4388.2018.01.002]
 GAO Chao,AI Kun,GAO Hui,et al.Test method of total leak-off coefficient and optimization of fracturing parameters based on operation pressure curves[J].Well Testing,2018,27(02):8.[doi:10.19680/j.cnki.1004-4388.2018.01.002]
[3]周小林,高志华,张 冲.龙凤山气田大通径免钻桥塞分段压裂先导试验[J].油气井测试,2018,27(01):62.[doi:10.19680/j.cnki.1004-4388.2018.01.010]
 ZHOU Xiaolin,GAO Zhihua,ZHANG Chong. Pilot tests of staged fracturing involving largediameter drillfree bridge plugs in the Longfengshan gas field[J].Well Testing,2018,27(02):62.[doi:10.19680/j.cnki.1004-4388.2018.01.010]
[4]魏 聪,陈宝新,刘 敏,等. 基于反褶积技术的S气井不稳定试井解释[J].油气井测试,2018,27(01):73.[doi:10.19680/j.cnki.1004-4388.2018.01.012]
 WEI Cong,CHEN Baoxin,LIU Min,et al. Interpretation of pressure transient well testing data of S gas well based on deconvolution technique[J].Well Testing,2018,27(02):73.[doi:10.19680/j.cnki.1004-4388.2018.01.012]
[5]张中宝.塔河油田深抽杆式泵一体化管柱工艺[J].油气井测试,2018,27(02):27.[doi:10.19680/j.cnki.1004-4388.2018.02.005]
 ZHANG Zhongbao.Deep integrated rod pumping string applied in Tahe Oilfield[J].Well Testing,2018,27(02):27.[doi:10.19680/j.cnki.1004-4388.2018.02.005]
[6]田向东,康 露,杨 志,等.海上油气井快速诱喷测试技术[J].油气井测试,2018,27(02):41.[doi:10.19680/j.cnki.1004-4388.2018.02.007]
 TIAN Xiangdong,KANG Lu,YANG Zhi,et al.Fast testing of induced flows in offshore oil/gas wells[J].Well Testing,2018,27(02):41.[doi:10.19680/j.cnki.1004-4388.2018.02.007]
[7]张 毅,于丽敏,任勇强,等.一种新型可降解压裂封隔器坐封球[J].油气井测试,2018,27(02):53.[doi:10.19680/j.cnki.1004-4388.2018.02.009]
 ZHANG Yi,YU Limin,REN Yongqiang,et al.A new type of degradable setting ball for fracturing packers[J].Well Testing,2018,27(02):53.[doi:10.19680/j.cnki.1004-4388.2018.02.009]
[8]褚春波,郭 权,黄小云,等.有限元分析径向水力压裂裂缝扩展影响因素[J].油气井测试,2018,27(02):59.[doi:10.19680/j.cnki.1004-4388.2018.02.010]
 CHU Chunbo,GUO Quan,HUANG Xiaoyun,et al.Finiteelement analysis on influencing factors for propagation of fractures induced in radial jet hydraulic fracturing[J].Well Testing,2018,27(02):59.[doi:10.19680/j.cnki.1004-4388.2018.02.010]
[9]庞伟.酸性气藏深井产能试井方法[J].油气井测试,2018,27(02):67.[doi:10.19680/j.cnki.1004-4388.2018.02.011]
 PANG Wei.Deliverability test method for deep sour gas wells[J].Well Testing,2018,27(02):67.[doi:10.19680/j.cnki.1004-4388.2018.02.011]
[10]梁 斌,谭先红,焦松杰,等.东海低孔低渗气田气井压裂投产后“一点法”产能方程[J].油气井测试,2018,27(02):73.[doi:10.19680/j.cnki.1004-4388.2018.02.012]
 LIANG Bin,TAN Xianhong,JIAO Songjie,et al.“Singlepoint” productivity equation for fractured gas wells in lowporosity and lowpermeability reservoirs, East China Sea[J].Well Testing,2018,27(02):73.[doi:10.19680/j.cnki.1004-4388.2018.02.012]
[11]姜洪丰. 海上低流度储层启动压力梯度测试新方法[J].油气井测试,2024,33(05):51.[doi:10.19680/j.cnki.1004-4388.2024.05.008]
 [J].Well Testing,2024,33(02):51.[doi:10.19680/j.cnki.1004-4388.2024.05.008]

更新日期/Last Update: 2018-06-21