[1]兰夕堂,黄宇科,张丽平,等. 中高渗疏松砂岩水力喷射压裂水动力封隔特性[J].油气井测试,2023,32(06):1-7.[doi:10.19680/j.cnki.1004-4388.2023.06.001]
 LAN Xitang,HUANG Yuke,ZHANG Liping,et al.Simulation and feasibility analysis of hydrodynamic sealing in hydraulic jet fracturing of medium to high permeability unconsolidated sandstone[J].Well Testing,2023,32(06):1-7.[doi:10.19680/j.cnki.1004-4388.2023.06.001]
点击复制

 中高渗疏松砂岩水力喷射压裂水动力封隔特性()
分享到:

《油气井测试》[ISSN:1006-6977/CN:61-1281/TN]

卷:
32
期数:
2023年06期
页码:
1-7
栏目:
出版日期:
2023-12-25

文章信息/Info

Title:
Simulation and feasibility analysis of hydrodynamic sealing in hydraulic jet fracturing of medium to high permeability unconsolidated sandstone
文章编号:
1004-4388(2023)06-0001-07
作者:
 兰夕堂1黄宇科2张丽平1高尚1代磊阳1盛茂2
 1.中海石油(中国)有限公司天津分公司渤海石油研究院 天津 300452
2.油气资源与工程全国重点实验室(中国石油大学(北京)) 北京 102200
Author(s):
 LAN Xitang1 HUANG Yuke2 ZHANG Liping1 GAO Shang1 DAI Leiyang1 SHENG Mao2
 1.Bohai Petroleum Research Institute of Tianjin Branch of CNOOC (China) Co, Tianjin 300452, China
2.State Key Laboratory of Oil and Gas Resources and Exploration (China University of Petroleum (Beijing)), Beijing 102200, China
关键词:
 水力喷射疏松砂岩压裂滤失地层射流增压数值模拟敏感性分析参数优化
Keywords:
 hydraulic injection loose sandstone fracturing lost formation jet pressurization numerical simulation sensitivity analysis parameter optimization
分类号:
TE357
DOI:
10.19680/j.cnki.1004-4388.2023.06.001
文献标志码:
A
摘要:
 为确定海上疏松砂岩高渗透条件下水力喷射孔内流体增压特性是否满足岩石定点起裂条件,采用了计算流体力学方法,基于达西定律推导出速度与渗透率关系方程,建立了考虑岩石孔眼边界高渗条件下水力喷射孔眼内流体动力学模型,实验验证模型可靠,得出了地层渗透率、喷嘴压降、环空围压等关键参数对孔内流体增压的影响规律。结果表明,疏松砂岩高渗透性是降低其水力喷射压裂水动力封隔能力的关键因素,孔内流体增压值随储层渗透率升高呈现非线性递减;喷嘴压降与孔内流体增压值呈线性增加关系,但孔内流体增压值的增长斜率随储层渗透率升高而降低;环空围压对孔内流体增压值无显著影响;敏感性分析表明,影响孔内流体增压的参数排序:储层渗透率>喷嘴压降>环空围压。研究结果可为海上水力喷射压裂水力学参数优化设计提供理论依据。
Abstract:
 In order to study the application of hydraulic jet fracturing technology in fine layering stimulation and transformation of low production and low efficiency wells in offshore medium and high permeability unconsolidated sandstone reservoirs, it is necessary to solve the problem of whether the fluid pressure characteristics in hydraulic jet holes still meet the fixed point fracturing conditions of rocks under high permeability conditions of unconsolidated sandstone. In this paper, the computational fluid dynamics method is used, and based on the relationship equation between velocity and permeability derived from Darcy′s law, the hydrodynamic model in the hydraulic jet hole considering the high permeability of the rock hole boundary is established. On the basis of the numerical model, different influencing factors (nozzle pressure drop, confining pressure, permeability) are set to study the variation law of fluid pressurization in the hole. And the simulation results were compared with previous indoor experimental results to verify the reliability of the model. The results indicate that nozzle pressure drop and rock permeability are the two main controlling factors affecting the pressurization of jet flow in porous sandstone formations, while annular confining pressure has no effect on the pressurization of jet flow in the hole. In actual working conditions, hydraulic jet fracturing needs to be carried out at a formation permeability of less than 8D to achieve pressure boosting effect. The research results can provide a theoretical basis for the application of hydraulic jet fracturing technology in offshore medium and high permeability reservoir fracturing and the optimization design of offshore hydraulic jet fracturing hydraulics parameters.

相似文献/References:

[1]曹银萍,黄宇曦,于凯强,等. 基于ANSYS Workbench完井管柱流固耦合振动固有频率分析[J].油气井测试,2018,27(01):1.[doi:10.19680/j.cnki.1004-4388.2018.01.001]
 CAO Yinping,HUANG Yuxi,YU Kaiqiang,et al. Natural frequency analysis for fluidsolid coupling vibration of completion string based on ANSYS workbench[J].Well Testing,2018,27(06):1.[doi:10.19680/j.cnki.1004-4388.2018.01.001]
[2]高 超,艾 昆,高 辉,等. 基于施工压力曲线的综合滤失系数测试方法及压裂参数优化[J].油气井测试,2018,27(01):8.[doi:10.19680/j.cnki.1004-4388.2018.01.002]
 GAO Chao,AI Kun,GAO Hui,et al.Test method of total leak-off coefficient and optimization of fracturing parameters based on operation pressure curves[J].Well Testing,2018,27(06):8.[doi:10.19680/j.cnki.1004-4388.2018.01.002]
[3]周小林,高志华,张 冲.龙凤山气田大通径免钻桥塞分段压裂先导试验[J].油气井测试,2018,27(01):62.[doi:10.19680/j.cnki.1004-4388.2018.01.010]
 ZHOU Xiaolin,GAO Zhihua,ZHANG Chong. Pilot tests of staged fracturing involving largediameter drillfree bridge plugs in the Longfengshan gas field[J].Well Testing,2018,27(06):62.[doi:10.19680/j.cnki.1004-4388.2018.01.010]
[4]魏 聪,陈宝新,刘 敏,等. 基于反褶积技术的S气井不稳定试井解释[J].油气井测试,2018,27(01):73.[doi:10.19680/j.cnki.1004-4388.2018.01.012]
 WEI Cong,CHEN Baoxin,LIU Min,et al. Interpretation of pressure transient well testing data of S gas well based on deconvolution technique[J].Well Testing,2018,27(06):73.[doi:10.19680/j.cnki.1004-4388.2018.01.012]
[5]张中宝.塔河油田深抽杆式泵一体化管柱工艺[J].油气井测试,2018,27(02):27.[doi:10.19680/j.cnki.1004-4388.2018.02.005]
 ZHANG Zhongbao.Deep integrated rod pumping string applied in Tahe Oilfield[J].Well Testing,2018,27(06):27.[doi:10.19680/j.cnki.1004-4388.2018.02.005]
[6]李军贤.地层出砂井测试工艺优化[J].油气井测试,2018,27(02):47.[doi:10.19680/j.cnki.1004-4388.2018.02.008]
 LI Junxian.Optimization of testing techniques for wells with formation sand production[J].Well Testing,2018,27(06):47.[doi:10.19680/j.cnki.1004-4388.2018.02.008]
[7]田向东,康 露,杨 志,等.海上油气井快速诱喷测试技术[J].油气井测试,2018,27(02):41.[doi:10.19680/j.cnki.1004-4388.2018.02.007]
 TIAN Xiangdong,KANG Lu,YANG Zhi,et al.Fast testing of induced flows in offshore oil/gas wells[J].Well Testing,2018,27(06):41.[doi:10.19680/j.cnki.1004-4388.2018.02.007]
[8]张 毅,于丽敏,任勇强,等.一种新型可降解压裂封隔器坐封球[J].油气井测试,2018,27(02):53.[doi:10.19680/j.cnki.1004-4388.2018.02.009]
 ZHANG Yi,YU Limin,REN Yongqiang,et al.A new type of degradable setting ball for fracturing packers[J].Well Testing,2018,27(06):53.[doi:10.19680/j.cnki.1004-4388.2018.02.009]
[9]褚春波,郭 权,黄小云,等.有限元分析径向水力压裂裂缝扩展影响因素[J].油气井测试,2018,27(02):59.[doi:10.19680/j.cnki.1004-4388.2018.02.010]
 CHU Chunbo,GUO Quan,HUANG Xiaoyun,et al.Finiteelement analysis on influencing factors for propagation of fractures induced in radial jet hydraulic fracturing[J].Well Testing,2018,27(06):59.[doi:10.19680/j.cnki.1004-4388.2018.02.010]
[10]庞伟.酸性气藏深井产能试井方法[J].油气井测试,2018,27(02):67.[doi:10.19680/j.cnki.1004-4388.2018.02.011]
 PANG Wei.Deliverability test method for deep sour gas wells[J].Well Testing,2018,27(06):67.[doi:10.19680/j.cnki.1004-4388.2018.02.011]
[11]王绪性,冯青,李湾湾,等.海上中低渗储层水力喷射压裂技术[J].油气井测试,2021,30(01):46.[doi:10.19680/j.cnki.1004-4388.2021.01.009]
 WANG Xuxing,FENG Qing,LI Wanwan,et al. Hydraulic jet fracturing technology for offshore medium and low permeability reservoirs[J].Well Testing,2021,30(06):46.[doi:10.19680/j.cnki.1004-4388.2021.01.009]
[12]叶志权,肖雷,王丽峰,等. 小井眼连续油管多簇射孔填砂分段压裂技术———以百口泉油田百1 断块X 井为例[J].油气井测试,2023,32(01):33.[doi:10. 19680/ j. cnki. 1004-4388. 2023. 01. 006]
 [J].Well Testing,2023,32(06):33.[doi:10. 19680/ j. cnki. 1004-4388. 2023. 01. 006]

备注/Memo

备注/Memo:
 2023-04-08收稿, 2023-08-25修回, 2023-10-12接受, 2023-12-20 网络版发表
中海油有限公司综合科研项目“渤海疏松砂岩老井压裂增产关键技术研究”(YXKY-2021-TJ-02)
兰夕堂,男,1987年出生,硕士,工程师,2014年毕业于西南石油大学石油与天然气工程专业,现从事油气田增产改造理论与技术研究工作。
电话:022-66501176;Email:lanxt@cnooc.com.cn。通信地址:天津市滨海新区海洋高新区渤海石油管理局大厦B座,邮政编码:300452。
更新日期/Last Update: 2024-01-02