[1]廖刚,贺秋云,朱铁栋. 威204井区排采作业页岩气井口降温技术[J].油气井测试,2022,31(02):25-30.[doi:10.19680/j.cnki.1004-4388.2022.02.005]
 LIAO Gang,HE Qiuyun,ZHU Tiedong. Shale gas wellhead cooling technology for dewatering gas production in Wei 204 well block[J].Well Testing,2022,31(02):25-30.[doi:10.19680/j.cnki.1004-4388.2022.02.005]
点击复制

 威204井区排采作业页岩气井口降温技术()
分享到:

《油气井测试》[ISSN:1006-6977/CN:12-1485/TE]

卷:
31
期数:
2022年02
页码:
25-30
栏目:
出版日期:
2022-04-25

文章信息/Info

Title:
 Shale gas wellhead cooling technology for dewatering gas production in Wei 204 well block
文章编号:
1004-4388(2022)02-0025-06
作者:
 廖刚贺秋云朱铁栋
 中国石油集团川庆钻探工程有限公司试修公司 四川成都 610000
Author(s):
 LIAO Gang HE Qiuyun ZHU Tiedong
 Well Testing and Workover Company, CNPC Chuanqing Drilling Engineering Co., Ltd., Chengdu, Sichuan 610000, China
关键词:
 威204井区 页岩气 输气管网 降温技术 节流降温 排水采气 输气效率
Keywords:
Wei 204 well block shale gas gas transmission pipeline network cooling technology throttling cooling dewatering gas production gas transmission efficiency
分类号:
TE377
DOI:
10.19680/j.cnki.1004-4388.2022.02.005
文献标志码:
B
摘要:
 页岩气井井口温度高,部分地层水气化进入输气管网,入网后又冷凝成水,造成了输压升高、管线腐蚀。通过先导性试验和工程试算,明确了近90%能量浪费在对返排水的降温,故先除水再降温。经对冷冻式降温、涡流管降温、节流降温技术的对比分析,确立以节流降温为核心的井口页岩气降温技术。研制和配套了降温关键装备,形成了“高效除水+节流降温+循环降温”的复合工艺技术,探索到了一套全新的排采作业页岩气井口降温方法。该技术在威204井区进行了10余井次的现场应用,成功实现了井口高温页岩气的高效降温,最大温降超过了40℃,减少了气田水进入管输系统,提高了输气效率和本质安全,为页岩气规模化商业化开发奠定了基础。
Abstract:
 Due to the high wellhead temperature of shale gas wells, part of the formation water enters the gas transmission network after gasification and then condenses into water, resulting in the increase of transmission pressure and pipeline corrosion. Through the pilot test and engineering calculation, it has been clarified that nearly 90% of the energy is wasted in cooling the backwater, so the water should be removed before cooling. Through the comparative analysis of refrigeration cooling, vortex tube cooling and throttling cooling technologies, the core of wellhead shale gas cooling technology is defined as throttling cooling. The corresponding key cooling equipment has been developed, forming a composite process technology of “efficient water removal + throttling cooling + cyclic cooling”, and a new set of cooling method for shale gas at wellhead in dewatering gas production has been established. The technology 〖JP2〗has been applied in more than 10 well times in Wei204 well block, and has successfully realized the efficient cooling of high temperature shale gas at the wellhead. The maximum temperature drop is more than 40℃, which reduces the amount of the water entering the pipeline 〖JP〗system. This technology improves the gas transmission efficiency and safety and lays a foundation for the largescale commercial development of shale gas.

相似文献/References:

[1]曹银萍,黄宇曦,于凯强,等. 基于ANSYS Workbench完井管柱流固耦合振动固有频率分析[J].油气井测试,2018,27(01):1.[doi:10.19680/j.cnki.1004-4388.2018.01.001]
 CAO Yinping,HUANG Yuxi,YU Kaiqiang,et al. Natural frequency analysis for fluidsolid coupling vibration of completion string based on ANSYS workbench[J].Well Testing,2018,27(02):1.[doi:10.19680/j.cnki.1004-4388.2018.01.001]
[2]高 超,艾 昆,高 辉,等. 基于施工压力曲线的综合滤失系数测试方法及压裂参数优化[J].油气井测试,2018,27(01):8.[doi:10.19680/j.cnki.1004-4388.2018.01.002]
 GAO Chao,AI Kun,GAO Hui,et al.Test method of total leak-off coefficient and optimization of fracturing parameters based on operation pressure curves[J].Well Testing,2018,27(02):8.[doi:10.19680/j.cnki.1004-4388.2018.01.002]
[3]周小林,高志华,张 冲.龙凤山气田大通径免钻桥塞分段压裂先导试验[J].油气井测试,2018,27(01):62.[doi:10.19680/j.cnki.1004-4388.2018.01.010]
 ZHOU Xiaolin,GAO Zhihua,ZHANG Chong. Pilot tests of staged fracturing involving largediameter drillfree bridge plugs in the Longfengshan gas field[J].Well Testing,2018,27(02):62.[doi:10.19680/j.cnki.1004-4388.2018.01.010]
[4]魏 聪,陈宝新,刘 敏,等. 基于反褶积技术的S气井不稳定试井解释[J].油气井测试,2018,27(01):73.[doi:10.19680/j.cnki.1004-4388.2018.01.012]
 WEI Cong,CHEN Baoxin,LIU Min,et al. Interpretation of pressure transient well testing data of S gas well based on deconvolution technique[J].Well Testing,2018,27(02):73.[doi:10.19680/j.cnki.1004-4388.2018.01.012]
[5]张中宝.塔河油田深抽杆式泵一体化管柱工艺[J].油气井测试,2018,27(02):27.[doi:10.19680/j.cnki.1004-4388.2018.02.005]
 ZHANG Zhongbao.Deep integrated rod pumping string applied in Tahe Oilfield[J].Well Testing,2018,27(02):27.[doi:10.19680/j.cnki.1004-4388.2018.02.005]
[6]李军贤.地层出砂井测试工艺优化[J].油气井测试,2018,27(02):47.[doi:10.19680/j.cnki.1004-4388.2018.02.008]
 LI Junxian.Optimization of testing techniques for wells with formation sand production[J].Well Testing,2018,27(02):47.[doi:10.19680/j.cnki.1004-4388.2018.02.008]
[7]田向东,康 露,杨 志,等.海上油气井快速诱喷测试技术[J].油气井测试,2018,27(02):41.[doi:10.19680/j.cnki.1004-4388.2018.02.007]
 TIAN Xiangdong,KANG Lu,YANG Zhi,et al.Fast testing of induced flows in offshore oil/gas wells[J].Well Testing,2018,27(02):41.[doi:10.19680/j.cnki.1004-4388.2018.02.007]
[8]张 毅,于丽敏,任勇强,等.一种新型可降解压裂封隔器坐封球[J].油气井测试,2018,27(02):53.[doi:10.19680/j.cnki.1004-4388.2018.02.009]
 ZHANG Yi,YU Limin,REN Yongqiang,et al.A new type of degradable setting ball for fracturing packers[J].Well Testing,2018,27(02):53.[doi:10.19680/j.cnki.1004-4388.2018.02.009]
[9]褚春波,郭 权,黄小云,等.有限元分析径向水力压裂裂缝扩展影响因素[J].油气井测试,2018,27(02):59.[doi:10.19680/j.cnki.1004-4388.2018.02.010]
 CHU Chunbo,GUO Quan,HUANG Xiaoyun,et al.Finiteelement analysis on influencing factors for propagation of fractures induced in radial jet hydraulic fracturing[J].Well Testing,2018,27(02):59.[doi:10.19680/j.cnki.1004-4388.2018.02.010]
[10]庞伟.酸性气藏深井产能试井方法[J].油气井测试,2018,27(02):67.[doi:10.19680/j.cnki.1004-4388.2018.02.011]
 PANG Wei.Deliverability test method for deep sour gas wells[J].Well Testing,2018,27(02):67.[doi:10.19680/j.cnki.1004-4388.2018.02.011]

备注/Memo

备注/Memo:
 2021-03-24收稿,2021-10-30修回,2022-01-25接受,2022-04-20网络版发表
川庆钻探工程有限公司科技项目“基于射孔爆轰效应的超深井射孔-测试联作安全控制技术研究”(CQ2020B-49-1-4)、
川庆钻探工程有限公司科技项目“低压气井带压修井装置配套及工艺技术研究”(CQ2021B-23-1-4)、
川庆钻探工程有限公司科技项目“川南深层页岩气高温高压测试及测试分离器防腐技术研究”(CQ2021B-22-1-4)
廖刚,男,1983年出生,硕士研究生,工程师, 2010年毕业于西南石油大学油气井工程专业,目前从事油气井试修测试研究与现场服务工作。
电话:028-86017418,13550096019;Email:357831591@qq.com。通信地址:成都市成华区建设北路二段157号,邮政编码:610000。
更新日期/Last Update: 2022-05-07