[1]郑天文. 自动举升试井防喷装置的研制及力学分析[J].油气井测试,2021,30(01):26-30.[doi:10.19680/j.cnki.1004-4388.2021.01.005]
 ZHENG Tianwen.Development and mechanical analysis of automatic lift well test blowout preventer[J].Well Testing,2021,30(01):26-30.[doi:10.19680/j.cnki.1004-4388.2021.01.005]
点击复制

 自动举升试井防喷装置的研制及力学分析()
分享到:

《油气井测试》[ISSN:1006-6977/CN:61-1281/TN]

卷:
30卷
期数:
2021年01期
页码:
26-30
栏目:
出版日期:
2021-02-25

文章信息/Info

Title:
Development and mechanical analysis of automatic lift well test blowout preventer
文章编号:
1004-4388(2021)01-0026-05
作者:
 郑天文
 中国石油大庆油田有限责任公司测试技术服务分公司 黑龙江大庆 163453
Author(s):
ZHENG Tianwen
 

Well Testing Technology Service Branch, PetroChina Daqing Oilfield Co., Ltd., Daqing,

Heilongjiang 163513, China

关键词:
 试井防喷装置防喷管液压举升力学分析采油树
Keywords:

well test blowout preventer lubricator hydraulic lift mechanical analysis Christmas

tree

分类号:
TE353
DOI:
10.19680/j.cnki.1004-4388.2021.01.005
文献标志码:
B
摘要:
 

传统试井施工作业需要人工举升测试仪器,攀爬到防喷管顶部,将仪器送入高35 m的防喷管内,存在工人劳

动强度大、效率低、安全系数低等问题。研制的自动举升试井防喷装置,以便携无线液压泵站为动力源,驱动液压油缸,在地面完成将仪器装入防喷装置的所有安装工作;举

升过程中,液压油缸将防喷管顶起,防喷管自动对接完成安装;施工结束后,按反安装顺序拆卸防喷装置。为了施工安全,对防喷管强度、立柱尺寸进行了适应性验证,对采

油树受力情况进行了分析。该装置在大庆油田完成生产试井12万多层,应用效果显著。

Abstract:

The traditional well test operation requires workers to climb to the top of the

blowout preventer and send the instrument into the blowout preventer with a height of 35 m, which has the problems of high labor intensity, low

efficiency and low safety factor. The developed automatic lifting well test blowout preventer takes the portable wireless hydraulic pump station as the

power source driving the hydraulic cylinder and completing all the installation work of installing the instrument into the blowout preventer on the

ground. During the lifting process, the hydraulic cylinder jacks up the blowout preventer, and the blowout preventer is automatically butted to complete

the installation; when the construction is completed, the blowout preventer is disassembled according to the reverse installation sequence. In order

to ensure the safety of construction, the adaptability verification of lubricator strength and column size was conducted, and the mechanical force

of Christmas tree was analyzed. The device has been used in 120 000 wells in Daqing Oilfield, and the application effect is remarkable

相似文献/References:

[1]曹银萍,黄宇曦,于凯强,等. 基于ANSYS Workbench完井管柱流固耦合振动固有频率分析[J].油气井测试,2018,27(01):1.[doi:10.19680/j.cnki.1004-4388.2018.01.001]
 CAO Yinping,HUANG Yuxi,YU Kaiqiang,et al. Natural frequency analysis for fluidsolid coupling vibration of completion string based on ANSYS workbench[J].Well Testing,2018,27(01):1.[doi:10.19680/j.cnki.1004-4388.2018.01.001]
[2]高 超,艾 昆,高 辉,等. 基于施工压力曲线的综合滤失系数测试方法及压裂参数优化[J].油气井测试,2018,27(01):8.[doi:10.19680/j.cnki.1004-4388.2018.01.002]
 GAO Chao,AI Kun,GAO Hui,et al.Test method of total leak-off coefficient and optimization of fracturing parameters based on operation pressure curves[J].Well Testing,2018,27(01):8.[doi:10.19680/j.cnki.1004-4388.2018.01.002]
[3]欧阳伟平.致密气藏分段压裂水平井的不稳定压力与产量综合分析方法[J].油气井测试,2018,27(01):14.[doi:10.19680/j.cnki.1004-4388.2018.01.003]
 OUYANG Weiping. Comprehensive analysis method for transient pressure and production of multistage fractured horizontal well in tight gas reservoirs[J].Well Testing,2018,27(01):14.[doi:10.19680/j.cnki.1004-4388.2018.01.003]
[4]周小林,高志华,张 冲.龙凤山气田大通径免钻桥塞分段压裂先导试验[J].油气井测试,2018,27(01):62.[doi:10.19680/j.cnki.1004-4388.2018.01.010]
 ZHOU Xiaolin,GAO Zhihua,ZHANG Chong. Pilot tests of staged fracturing involving largediameter drillfree bridge plugs in the Longfengshan gas field[J].Well Testing,2018,27(01):62.[doi:10.19680/j.cnki.1004-4388.2018.01.010]
[5]魏 聪,陈宝新,刘 敏,等. 基于反褶积技术的S气井不稳定试井解释[J].油气井测试,2018,27(01):73.[doi:10.19680/j.cnki.1004-4388.2018.01.012]
 WEI Cong,CHEN Baoxin,LIU Min,et al. Interpretation of pressure transient well testing data of S gas well based on deconvolution technique[J].Well Testing,2018,27(01):73.[doi:10.19680/j.cnki.1004-4388.2018.01.012]
[6]张中宝.塔河油田深抽杆式泵一体化管柱工艺[J].油气井测试,2018,27(02):27.[doi:10.19680/j.cnki.1004-4388.2018.02.005]
 ZHANG Zhongbao.Deep integrated rod pumping string applied in Tahe Oilfield[J].Well Testing,2018,27(01):27.[doi:10.19680/j.cnki.1004-4388.2018.02.005]
[7]李军贤.地层出砂井测试工艺优化[J].油气井测试,2018,27(02):47.[doi:10.19680/j.cnki.1004-4388.2018.02.008]
 LI Junxian.Optimization of testing techniques for wells with formation sand production[J].Well Testing,2018,27(01):47.[doi:10.19680/j.cnki.1004-4388.2018.02.008]
[8]田向东,康 露,杨 志,等.海上油气井快速诱喷测试技术[J].油气井测试,2018,27(02):41.[doi:10.19680/j.cnki.1004-4388.2018.02.007]
 TIAN Xiangdong,KANG Lu,YANG Zhi,et al.Fast testing of induced flows in offshore oil/gas wells[J].Well Testing,2018,27(01):41.[doi:10.19680/j.cnki.1004-4388.2018.02.007]
[9]张 毅,于丽敏,任勇强,等.一种新型可降解压裂封隔器坐封球[J].油气井测试,2018,27(02):53.[doi:10.19680/j.cnki.1004-4388.2018.02.009]
 ZHANG Yi,YU Limin,REN Yongqiang,et al.A new type of degradable setting ball for fracturing packers[J].Well Testing,2018,27(01):53.[doi:10.19680/j.cnki.1004-4388.2018.02.009]
[10]褚春波,郭 权,黄小云,等.有限元分析径向水力压裂裂缝扩展影响因素[J].油气井测试,2018,27(02):59.[doi:10.19680/j.cnki.1004-4388.2018.02.010]
 CHU Chunbo,GUO Quan,HUANG Xiaoyun,et al.Finiteelement analysis on influencing factors for propagation of fractures induced in radial jet hydraulic fracturing[J].Well Testing,2018,27(01):59.[doi:10.19680/j.cnki.1004-4388.2018.02.010]
[11]张学山,李国伟,王洪军,等.新型钢丝作业防喷堵头[J].油气井测试,2020,29(02):43.[doi:10.19680/j.cnki.1004-4388.2020.02.008]
 ZHANG Xueshan,LI Guowei,WANG Hongjun,et al.A new type of blowout plug for steel wire operation[J].Well Testing,2020,29(01):43.[doi:10.19680/j.cnki.1004-4388.2020.02.008]
[12]王峻岭. 生产测井与试井联合作业技术[J].油气井测试,2021,30(02):51.[doi:10.19680/j.cnki.1004-4388.2021.02.010]
 WANG Junling.Combined operation technology of production logging and well testing[J].Well Testing,2021,30(01):51.[doi:10.19680/j.cnki.1004-4388.2021.02.010]
[13]陈业亭. 液面回声仪应用问题浅析[J].油气井测试,2021,30(02):56.[doi:10.19680/j.cnki.1004-4388.2021.02.011]
 CHEN Yeting. Analysis on application of liquid level echometer[J].Well Testing,2021,30(01):56.[doi:10.19680/j.cnki.1004-4388.2021.02.011]
[14]吴明录 ,李涛,赵高龙,等. 双重孔隙介质三区复合油藏水平井试井模型[J].油气井测试,2022,31(04):6.[doi:10.19680/j.cnki.1004-4388.2022.04.002]
 [J].Well Testing,2022,31(01):6.[doi:10.19680/j.cnki.1004-4388.2022.04.002]
[15]邵振鹏,韦建炬,潘秀英,等. 地面直读试井技术在临河油田自喷井及机采井应用效果分析[J].油气井测试,2022,31(04):31.[doi:10.19680/j.cnki.1004-4388.2022.04.006]
 [J].Well Testing,2022,31(01):31.[doi:10.19680/j.cnki.1004-4388.2022.04.006]
[16]王奎,张乾,滕俊男,等. 大港油田GY1井钢丝打捞作业[J].油气井测试,2022,31(04):42.[doi:10.19680/j.cnki.1004-4388.2022.04.008]
 [J].Well Testing,2022,31(01):42.[doi:10.19680/j.cnki.1004-4388.2022.04.008]

备注/Memo

备注/Memo:
 2020-04-22收稿,2020-12-26修回,2021-01-04接受,2021-02-20 网络版发表

郑天文,男,1990年出生, 助理工程师,2013年6月毕业于哈尔滨理工大学信息管理与信

息系统专业,现从事工程技术施工环保及HSE管理工作。电话:0459-5820927,15004583060;Email:dlts_zhengtw@petrochina.com.cn。通信地址:黑龙江省大庆市

萨尔图区丰收村测试技术服务分公司,邮政编码:163453。

更新日期/Last Update: 2021-03-09