[1]陈业亭. 液面回声仪应用问题浅析[J].油气井测试,2021,30(02):56-60.[doi:10.19680/j.cnki.1004-4388.2021.02.011]
 CHEN Yeting. Analysis on application of liquid level echometer[J].Well Testing,2021,30(02):56-60.[doi:10.19680/j.cnki.1004-4388.2021.02.011]
点击复制

 液面回声仪应用问题浅析()
分享到:

《油气井测试》[ISSN:1006-6977/CN:61-1281/TN]

卷:
30卷
期数:
2021年02期
页码:
56-60
栏目:
出版日期:
2021-04-25

文章信息/Info

Title:
 Analysis on application of liquid level echometer
文章编号:
1004-4388(2021)02-0056-05
作者:
 陈业亭
 中国石油大庆油田有限责任公司测试技术服务分公司 黑龙江大庆 163853
Author(s):
 CHEN Yeting
 Well Testing Technology Service Branch, PetroChina Daqing Oilfield Co., Ltd., Daqing, Heilongjiang 163453, China
关键词:
 试井回声仪反射波油井液面泡沫层动态监测
Keywords:
well test echometer reflected wave liquid level of oil well foam layer dynamic monitoring
分类号:
TE927
DOI:
10.19680/j.cnki.1004-4388.2021.02.011
文献标志码:
B
摘要:
 大庆油田榆树林区块油井液面恢复测试时,常出现液面测试曲线混乱、不清晰和无明显液面曲线等现象,难以有效提供真实准确的油井液面恢复资料。对2015年3月-2016年10月189井次液面测试资料进行梳理,按照归纳法整理为测试曲线无液面波和测试曲线液面波位置异常两大类;针对每类问题的各个现象,从仪器、井口或井下工具,以及井下流体对仪器测试时产生的影响进行分析,提出测试前的避免措施、测试中的注意事项,以及测试后的修正方法。2017年3月-2019年10月在榆树林油田进行液面测试297井次,成功率达872%,准确率达883%,为油田试井资料的精准录取提供了依据。
Abstract:
 During the oil well level recovery test in Yushulin block of Daqing Oilfield, the phenomena such as confusion, unclear and no obvious liquid level curve often appear, which makes it difficult to effectively provide real and accurate data of oil well liquid level recovery. In this paper, liquid level test data of total 189 wells from March 2015 to October 2016 are sorted out. According to induction method, these data are classified into two categories: no liquid level wave in test curve and abnormal position of liquid level wave in test curve. According to each phenomenon of each kind of problem, the influence of instrument, wellhead, downhole tool and downhole fluid on instrument test is analyzed, and the avoided measures before the test, the matters needed to pay attention to in the test and the correction methods after the test are put forward. From March 2017 to October 2019, 297 wells in Yushulin Oilfield were tested by this method, and the success rate was 872% and the accuracy rate was 883%, which provided a basis for accurate logging of well test data.

相似文献/References:

[1]曹银萍,黄宇曦,于凯强,等. 基于ANSYS Workbench完井管柱流固耦合振动固有频率分析[J].油气井测试,2018,27(01):1.[doi:10.19680/j.cnki.1004-4388.2018.01.001]
 CAO Yinping,HUANG Yuxi,YU Kaiqiang,et al. Natural frequency analysis for fluidsolid coupling vibration of completion string based on ANSYS workbench[J].Well Testing,2018,27(02):1.[doi:10.19680/j.cnki.1004-4388.2018.01.001]
[2]高 超,艾 昆,高 辉,等. 基于施工压力曲线的综合滤失系数测试方法及压裂参数优化[J].油气井测试,2018,27(01):8.[doi:10.19680/j.cnki.1004-4388.2018.01.002]
 GAO Chao,AI Kun,GAO Hui,et al.Test method of total leak-off coefficient and optimization of fracturing parameters based on operation pressure curves[J].Well Testing,2018,27(02):8.[doi:10.19680/j.cnki.1004-4388.2018.01.002]
[3]欧阳伟平.致密气藏分段压裂水平井的不稳定压力与产量综合分析方法[J].油气井测试,2018,27(01):14.[doi:10.19680/j.cnki.1004-4388.2018.01.003]
 OUYANG Weiping. Comprehensive analysis method for transient pressure and production of multistage fractured horizontal well in tight gas reservoirs[J].Well Testing,2018,27(02):14.[doi:10.19680/j.cnki.1004-4388.2018.01.003]
[4]周小林,高志华,张 冲.龙凤山气田大通径免钻桥塞分段压裂先导试验[J].油气井测试,2018,27(01):62.[doi:10.19680/j.cnki.1004-4388.2018.01.010]
 ZHOU Xiaolin,GAO Zhihua,ZHANG Chong. Pilot tests of staged fracturing involving largediameter drillfree bridge plugs in the Longfengshan gas field[J].Well Testing,2018,27(02):62.[doi:10.19680/j.cnki.1004-4388.2018.01.010]
[5]魏 聪,陈宝新,刘 敏,等. 基于反褶积技术的S气井不稳定试井解释[J].油气井测试,2018,27(01):73.[doi:10.19680/j.cnki.1004-4388.2018.01.012]
 WEI Cong,CHEN Baoxin,LIU Min,et al. Interpretation of pressure transient well testing data of S gas well based on deconvolution technique[J].Well Testing,2018,27(02):73.[doi:10.19680/j.cnki.1004-4388.2018.01.012]
[6]张中宝.塔河油田深抽杆式泵一体化管柱工艺[J].油气井测试,2018,27(02):27.[doi:10.19680/j.cnki.1004-4388.2018.02.005]
 ZHANG Zhongbao.Deep integrated rod pumping string applied in Tahe Oilfield[J].Well Testing,2018,27(02):27.[doi:10.19680/j.cnki.1004-4388.2018.02.005]
[7]李军贤.地层出砂井测试工艺优化[J].油气井测试,2018,27(02):47.[doi:10.19680/j.cnki.1004-4388.2018.02.008]
 LI Junxian.Optimization of testing techniques for wells with formation sand production[J].Well Testing,2018,27(02):47.[doi:10.19680/j.cnki.1004-4388.2018.02.008]
[8]田向东,康 露,杨 志,等.海上油气井快速诱喷测试技术[J].油气井测试,2018,27(02):41.[doi:10.19680/j.cnki.1004-4388.2018.02.007]
 TIAN Xiangdong,KANG Lu,YANG Zhi,et al.Fast testing of induced flows in offshore oil/gas wells[J].Well Testing,2018,27(02):41.[doi:10.19680/j.cnki.1004-4388.2018.02.007]
[9]张 毅,于丽敏,任勇强,等.一种新型可降解压裂封隔器坐封球[J].油气井测试,2018,27(02):53.[doi:10.19680/j.cnki.1004-4388.2018.02.009]
 ZHANG Yi,YU Limin,REN Yongqiang,et al.A new type of degradable setting ball for fracturing packers[J].Well Testing,2018,27(02):53.[doi:10.19680/j.cnki.1004-4388.2018.02.009]
[10]褚春波,郭 权,黄小云,等.有限元分析径向水力压裂裂缝扩展影响因素[J].油气井测试,2018,27(02):59.[doi:10.19680/j.cnki.1004-4388.2018.02.010]
 CHU Chunbo,GUO Quan,HUANG Xiaoyun,et al.Finiteelement analysis on influencing factors for propagation of fractures induced in radial jet hydraulic fracturing[J].Well Testing,2018,27(02):59.[doi:10.19680/j.cnki.1004-4388.2018.02.010]
[11]张学山,李国伟,王洪军,等.新型钢丝作业防喷堵头[J].油气井测试,2020,29(02):43.[doi:10.19680/j.cnki.1004-4388.2020.02.008]
 ZHANG Xueshan,LI Guowei,WANG Hongjun,et al.A new type of blowout plug for steel wire operation[J].Well Testing,2020,29(02):43.[doi:10.19680/j.cnki.1004-4388.2020.02.008]
[12]郑天文. 自动举升试井防喷装置的研制及力学分析[J].油气井测试,2021,30(01):26.[doi:10.19680/j.cnki.1004-4388.2021.01.005]
 ZHENG Tianwen.Development and mechanical analysis of automatic lift well test blowout preventer[J].Well Testing,2021,30(02):26.[doi:10.19680/j.cnki.1004-4388.2021.01.005]
[13]王峻岭. 生产测井与试井联合作业技术[J].油气井测试,2021,30(02):51.[doi:10.19680/j.cnki.1004-4388.2021.02.010]
 WANG Junling.Combined operation technology of production logging and well testing[J].Well Testing,2021,30(02):51.[doi:10.19680/j.cnki.1004-4388.2021.02.010]
[14]吴明录 ,李涛,赵高龙,等. 双重孔隙介质三区复合油藏水平井试井模型[J].油气井测试,2022,31(04):6.[doi:10.19680/j.cnki.1004-4388.2022.04.002]
 [J].Well Testing,2022,31(02):6.[doi:10.19680/j.cnki.1004-4388.2022.04.002]
[15]邵振鹏,韦建炬,潘秀英,等. 地面直读试井技术在临河油田自喷井及机采井应用效果分析[J].油气井测试,2022,31(04):31.[doi:10.19680/j.cnki.1004-4388.2022.04.006]
 [J].Well Testing,2022,31(02):31.[doi:10.19680/j.cnki.1004-4388.2022.04.006]
[16]王奎,张乾,滕俊男,等. 大港油田GY1井钢丝打捞作业[J].油气井测试,2022,31(04):42.[doi:10.19680/j.cnki.1004-4388.2022.04.008]
 [J].Well Testing,2022,31(02):42.[doi:10.19680/j.cnki.1004-4388.2022.04.008]

备注/Memo

备注/Memo:
 2020-07-29收稿,2021-02-25修回,2021-03-01接受,2021-04-20 网络版发表
陈业亭,男,1981年8月出生,硕士,工程师,2007年毕业于东北石油大学地球探测与信息技术专业,主要从事油水井生产井测试工作。电话:0459-4697810,18944586259;Email:dlts_chenyt@petrochina.com.cn。通信地址:黑龙江省大庆市红岗区创业庄采油九厂测试九大队,邮政编码:163853。
更新日期/Last Update: 2021-05-10