[1]褚春波,郭 权,黄小云,等.有限元分析径向水力压裂裂缝扩展影响因素[J].油气井测试,2018,27(02):59-66.[doi:10.19680/j.cnki.1004-4388.2018.02.010]
 CHU Chunbo,GUO Quan,HUANG Xiaoyun,et al.Finiteelement analysis on influencing factors for propagation of fractures induced in radial jet hydraulic fracturing[J].Well Testing,2018,27(02):59-66.[doi:10.19680/j.cnki.1004-4388.2018.02.010]
点击复制

有限元分析径向水力压裂裂缝扩展影响因素()
分享到:

《油气井测试》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2018年02期
页码:
59-66
栏目:
出版日期:
2018-04-25

文章信息/Info

Title:
Finiteelement analysis on influencing factors for propagation of fractures induced in radial jet hydraulic fracturing
文章编号:
1004-4388(2018)02-0059-08
作者:
褚春波1 郭  权1 黄小云1 黄振萍1 何  宇2 王亚辉2
1.中国石油大庆油田试油试采分公司  黑龙江大庆  163412
2.中国石油集团渤海钻探工程有限公司油气井测试分公司  河北廊坊  065007
Author(s):
 CHU Chunbo1 GUO Quan1 HUANG Xiaoyun1 HUANG Zhenping1 HE Yu2 WANG Yahui2
1. Well Testing Company of PetroChina Daqing Oilfield Company Limited, Daqing, Heilongjiang 163412, China
2. Well Testing Branch of CNPC Bohai Drilling Engineering Co., Ltd., Langfang, Hebei 065007, China
关键词:
 压裂水力压裂径向井裂缝有限元ABAQUS引导能力影响因素
Keywords:
 fracturing hydraulic fracturing radial jet fracture finite element ABAQUS conductivity influencing factors
分类号:
TE353
DOI:
10.19680/j.cnki.1004-4388.2018.02.010
文献标志码:
B
摘要:
 径向水射流辅助压裂的裂缝起裂和扩展机理尚不明确,基于ABAQUS平台,采用扩展有限元法对径向井水力压裂过程中裂缝的扩展过程进行数值模拟,探索径向井方位角、井径、井长、水平地应力差、岩石杨氏模量、岩石泊松比、储层渗透率、压裂液黏度、排量等9个因素对径向井引导裂缝扩展效果的影响规律,并利用灰色关联分析法研究各因素对径向井引导效果的影响能力大小。结果表明,随井径、井长、岩石泊松比等参数增大,径向井对裂缝引导效果增强;随径向井方位角、水平地应力差值等参数增大,径向井对裂缝引导效果减弱。各因素影响径向井对裂缝引导效果的程度由大至小顺序为:水平地应力差值、径向井方位角、井径、岩石泊松比、压裂液排量、储层渗透率、井长、压裂液黏度、岩石杨氏模量。该分析为径向井辅助压裂技术在低渗油藏的应用具有指导意义。
Abstract:
 The initiation and propagation mechanism of fractures induced in radial jet fracturing (RJF) is unknown. In this paper, numerical simulation was performed for propagation of RJF fractures by using the extended finite element method on the ABAQUS platform to highlight the impacts of 9 factors, i.e. radial well azimuth, borehole diameter, well length, horizontal differential geostress, Young modulus, Poisson’s ratio, reservoir permeability, fracturing fluid viscosity and flow rate, on the propagation of the hydraulic fractures. Moreover, the grey relational analysis was conducted to diagnose how the factors affect the propagation of RJF fractures. The study results show that the propagation capacity of RJF fractures enhances with the increase in borehole diameter, well length, and Poisson’s ratio, but reduces with the increase in radial well azimuth, horizontal differential geostress and other factors. In view of the impacts, these factors present a descending order of horizontal differential geostress, radial well azimuth, borehole diameter, Poisson’s ratio, fracturing fluid flow rate, reservoir permeability, well length, fracturing fluid viscosity, and Young modulus. The results provide necessary guidance for application of radial jet fracturing in lowpermeability oil reservoirs.

相似文献/References:

[1]曹银萍,黄宇曦,于凯强,等. 基于ANSYS Workbench完井管柱流固耦合振动固有频率分析[J].油气井测试,2018,27(01):1.[doi:10.19680/j.cnki.1004-4388.2018.01.001]
 CAO Yinping,HUANG Yuxi,YU Kaiqiang,et al. Natural frequency analysis for fluidsolid coupling vibration of completion string based on ANSYS workbench[J].Well Testing,2018,27(02):1.[doi:10.19680/j.cnki.1004-4388.2018.01.001]
[2]刘豇瑜,杨向同,袁学芳,等.塔中志留系储层重复改造选井和产能预测方法[J].油气井测试,2018,27(01):55.[doi:10.19680/j.cnki.1004-4388.2018.01.009]
 LIU Jiangyu,YANG Xiangtong,YUAN Xuefang,et al.Method of restimulation candidate selection and productivity prediction for Silurian reservoirs in Tazhong area[J].Well Testing,2018,27(02):55.[doi:10.19680/j.cnki.1004-4388.2018.01.009]
[3]周小林,高志华,张 冲.龙凤山气田大通径免钻桥塞分段压裂先导试验[J].油气井测试,2018,27(01):62.[doi:10.19680/j.cnki.1004-4388.2018.01.010]
 ZHOU Xiaolin,GAO Zhihua,ZHANG Chong. Pilot tests of staged fracturing involving largediameter drillfree bridge plugs in the Longfengshan gas field[J].Well Testing,2018,27(02):62.[doi:10.19680/j.cnki.1004-4388.2018.01.010]
[4]魏 聪,陈宝新,刘 敏,等. 基于反褶积技术的S气井不稳定试井解释[J].油气井测试,2018,27(01):73.[doi:10.19680/j.cnki.1004-4388.2018.01.012]
 WEI Cong,CHEN Baoxin,LIU Min,et al. Interpretation of pressure transient well testing data of S gas well based on deconvolution technique[J].Well Testing,2018,27(02):73.[doi:10.19680/j.cnki.1004-4388.2018.01.012]
[5]张中宝.塔河油田深抽杆式泵一体化管柱工艺[J].油气井测试,2018,27(02):27.[doi:10.19680/j.cnki.1004-4388.2018.02.005]
 ZHANG Zhongbao.Deep integrated rod pumping string applied in Tahe Oilfield[J].Well Testing,2018,27(02):27.[doi:10.19680/j.cnki.1004-4388.2018.02.005]
[6]李军贤.地层出砂井测试工艺优化[J].油气井测试,2018,27(02):47.[doi:10.19680/j.cnki.1004-4388.2018.02.008]
 LI Junxian.Optimization of testing techniques for wells with formation sand production[J].Well Testing,2018,27(02):47.[doi:10.19680/j.cnki.1004-4388.2018.02.008]
[7]田向东,康 露,杨 志,等.海上油气井快速诱喷测试技术[J].油气井测试,2018,27(02):41.[doi:10.19680/j.cnki.1004-4388.2018.02.007]
 TIAN Xiangdong,KANG Lu,YANG Zhi,et al.Fast testing of induced flows in offshore oil/gas wells[J].Well Testing,2018,27(02):41.[doi:10.19680/j.cnki.1004-4388.2018.02.007]
[8]张 毅,于丽敏,任勇强,等.一种新型可降解压裂封隔器坐封球[J].油气井测试,2018,27(02):53.[doi:10.19680/j.cnki.1004-4388.2018.02.009]
 ZHANG Yi,YU Limin,REN Yongqiang,et al.A new type of degradable setting ball for fracturing packers[J].Well Testing,2018,27(02):53.[doi:10.19680/j.cnki.1004-4388.2018.02.009]
[9]庞伟.酸性气藏深井产能试井方法[J].油气井测试,2018,27(02):67.[doi:10.19680/j.cnki.1004-4388.2018.02.011]
 PANG Wei.Deliverability test method for deep sour gas wells[J].Well Testing,2018,27(02):67.[doi:10.19680/j.cnki.1004-4388.2018.02.011]
[10]孟宪伟,刘洪杰,王佩文,等. 基于卷积和矩阵变流量压降试井解释新方法[J].油气井测试,2018,27(03):1.[doi:10.19680/j.cnki.1004-4388.2018.03.001]
 MENG Xianwei,LIU Hongjie,WANG Peiwen,et al. A new interpretation technique based on convolution and matrix for variablerate falloff test[J].Well Testing,2018,27(02):1.[doi:10.19680/j.cnki.1004-4388.2018.03.001]
[11]高 超,艾 昆,高 辉,等. 基于施工压力曲线的综合滤失系数测试方法及压裂参数优化[J].油气井测试,2018,27(01):8.[doi:10.19680/j.cnki.1004-4388.2018.01.002]
 GAO Chao,AI Kun,GAO Hui,et al.Test method of total leak-off coefficient and optimization of fracturing parameters based on operation pressure curves[J].Well Testing,2018,27(02):8.[doi:10.19680/j.cnki.1004-4388.2018.01.002]
[12]梁 斌,谭先红,焦松杰,等.东海低孔低渗气田气井压裂投产后“一点法”产能方程[J].油气井测试,2018,27(02):73.[doi:10.19680/j.cnki.1004-4388.2018.02.012]
 LIANG Bin,TAN Xianhong,JIAO Songjie,et al.“Singlepoint” productivity equation for fractured gas wells in lowporosity and lowpermeability reservoirs, East China Sea[J].Well Testing,2018,27(02):73.[doi:10.19680/j.cnki.1004-4388.2018.02.012]
[13]王绪性,冯青,李湾湾,等.海上中低渗储层水力喷射压裂技术[J].油气井测试,2021,30(01):46.[doi:10.19680/j.cnki.1004-4388.2021.01.009]
 WANG Xuxing,FENG Qing,LI Wanwan,et al. Hydraulic jet fracturing technology for offshore medium and low permeability reservoirs[J].Well Testing,2021,30(02):46.[doi:10.19680/j.cnki.1004-4388.2021.01.009]
[14]吴晓光,袁莉,李萌,等. 川西坳陷洛带气田致密砂岩气藏压力恢复试井特征分析[J].油气井测试,2021,30(01):59.[doi:10.19680/j.cnki.1004-4388.2021.01.011]
 WU Xiaoguang,YUAN Li,LI Meng,et al.Pressure buildup test characteristics of tight sandstone gas reservoir in Luodai gas field, Western Sichuan depression[J].Well Testing,2021,30(02):59.[doi:10.19680/j.cnki.1004-4388.2021.01.011]
[15]林应之,林启才,邓世杨,等. 深层砂岩裂缝性气藏缝网压裂裂缝导流能力分析[J].油气井测试,2021,30(05):9.[doi:10.19680/j.cnki.1004-4388.2021.05.002]
 LIN Yingzhi,LIN Qicai,DENG Shiyang,et al. Analysis on fracture conductivity of fracture network fracturing in deep sandstone fractured gas reservoir[J].Well Testing,2021,30(02):9.[doi:10.19680/j.cnki.1004-4388.2021.05.002]
[16]郭权. 大庆油田扶杨油层压后水性识别新方法[J].油气井测试,2021,30(05):55.[doi:10.19680/j.cnki.1004-4388.2021.05.010]
 GUO Quan. A new method for water identification of Fuyang oil reservoir after formation in Daqing Oilfield[J].Well Testing,2021,30(02):55.[doi:10.19680/j.cnki.1004-4388.2021.05.010]
[17]方正,丁群,李静宇,等. 基于深度置信网络模型的页岩油产量预测方法[J].油气井测试,2022,31(03):61.[doi:10.19680/j.cnki.1004-4388.2022.03.011]
 [J].Well Testing,2022,31(02):61.[doi:10.19680/j.cnki.1004-4388.2022.03.011]
[18]王学正,冯强,秦诗涛,等. HPR 高温高压压裂封隔器的研制与应用[J].油气井测试,2023,32(01):45.[doi:10. 19680/ j. cnki. 1004-4388. 2023. 01. 008]
 [J].Well Testing,2023,32(02):45.[doi:10. 19680/ j. cnki. 1004-4388. 2023. 01. 008]
[19]王海兵,陶静,彭丽. 压裂后不稳定试井早期恢复压力拟合重建方法[J].油气井测试,2023,32(04):68.[doi:10.19680/j.cnki.1004-4388.2023.04.012]
 [J].Well Testing,2023,32(02):68.[doi:10.19680/j.cnki.1004-4388.2023.04.012]
[20]吴刚,刘其伦,钟小军,等. 束鹿页岩油密切割压裂技术——以SY302X井为例[J].油气井测试,2023,32(05):36.[doi:10.19680/j.cnki.1004-4388.2023.05.007]
 [J].Well Testing,2023,32(02):36.[doi:10.19680/j.cnki.1004-4388.2023.05.007]

更新日期/Last Update: 2018-06-21